Differences between revisions 42 and 144 (spanning 102 versions)
Revision 42 as of 2008-03-15 20:48:51
Size: 11477
Editor: was
Comment:
Revision 144 as of 2021-06-24 09:28:41
Size: 2661
Editor: pang
Comment: added link to complex analysis
Deletions are marked like this. Additions are marked like this.
Line 3: Line 3:
Post code that demonstrates the use of the interact command in Sage here. It should be easy for people to just scroll through and paste examples out of here into their own sage notebooks. This is a collection of pages demonstrating the use of the **interact** command in Sage.
It should be easy to just scroll through and copy/paste examples into Sage notebooks.
If you have suggestions on how to improve interact, add them [[interact/Suggestions|here]]
or email the sage-support mailing list. Of course, your own examples are also welcome!
Line 5: Line 8:
We'll likely restructure and reorganize this once we have some nontrivial content and get a sense of how it is laid out. Documentation links:
Line 7: Line 10:
[[TableOfContents]]   * [[http://doc.sagemath.org/html/en/reference/repl/sage/repl/ipython_kernel/interact.html| interacts in the Jupyter notebook]] (see this page and the two following ones)
  * [[https://github.com/sagemath/sagenb/blob/master/sagenb/notebook/interact.py|interacts in the legacy SageNB notebook]] (many helpful examples)
  * [[https://github.com/sagemath/sagecell/blob/master/interact_compatibility.py|Sage Cell Server implementation]]
  * [[https://github.com/sagemathinc/cocalc/blob/master/src/smc_sagews/smc_sagews/sage_salvus.py#L348|CoCalc Sage worksheet implementation]]
Line 9: Line 15:
== Miscellaneous == Examples:
Line 11: Line 17:
=== Evaluate a bit of code in a given system ===  * [[interact/algebra|Algebra]]
 * [[interact/bio|Bioinformatics]]
 * [[interact/calculus|Calculus]]
 * [[interact/complex|Complex Analysis]]
 * [[interact/cryptography|Cryptography]]
 * [[interact/diffeq|Differential Equations]]
 * [[interact/graphics|Drawing Graphics]]
 * [[interact/dynsys|Dynamical Systems]]
 * [[interact/fractal|Fractals]]
 * [[interact/games|Games and Diversions]]
 * [[interact/geometry|Geometry]]
 * [[interact/graph_theory|Graph Theory]]
 * [[interact/linear_algebra|Linear Algebra]]
 * [[interact/Loop Quantum Gravity|Loop Quantum Gravity]]
 * [[interact/misc|Miscellaneous]]
 * [[interact/number_theory|Number Theory]]
 * [[interact/stats|Statistics/Probability]]
 * [[interact/topology|Topology]]
 * [[interact/web|Web Applications]]
Line 13: Line 37:
by William Stein (there is no way yet to make the text box big): == Explanatory example: Taylor Series ==
Line 15: Line 39:
{{{ This is the code and a mockup animation of the interact command. It defines a slider, seen on top, that can be dragged. Once dragged, it changes the value of the variable "order" and the whole block of code gets evaluated. This principle can be seen in various examples presented on the pages above!

{{{#!sagecell
x = SR.var('x')
x0 = 0
f = sin(x) * e^(-x)
p = plot(f, -1, 5, thickness=2)
dot = point((x0, f(x=x0)), pointsize=80, rgbcolor=(1, 0, 0))
Line 17: Line 49:
def _(system=selector([('sage0', 'Sage'), ('gp', 'PARI'), ('magma', 'Magma')]), code='2+2'):
    print globals()[system].eval(code)
def _(order=slider([1 .. 12])):
  ft = f.taylor(x, x0, order)
  pt = plot(ft, -1, 5, color='green', thickness=2)
  pretty_print(html(r'$f(x)\;=\;%s$' % latex(f)))
  pretty_print(html(r'$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$' % (x0, latex(ft), order+1)))
  show(dot + p + pt, ymin=-.5, ymax=1)
Line 20: Line 56:

attachment:evalsys.png


== Graph Theory ==

=== Automorphism Groups of some Graphs ===

by William Stein (I spent less than five minutes on this):

{{{
@interact
def _(graph=['CycleGraph', 'CubeGraph', 'RandomGNP'],
      n=selector([1..10],nrows=1), p=selector([10,20,..,100],nrows=1)):
    print graph
    if graph == 'CycleGraph':
       print "n (=%s): number of vertices"%n
       G = graphs.CycleGraph(n)
    elif graph == 'CubeGraph':
       if n > 8:
           print "n reduced to 8"
           n = 8
       print "n (=%s): dimension"%n
       G = graphs.CubeGraph(n)
    elif graph == 'RandomGNP':
       print "n (=%s) vertices"%n
       print "p (=%s%%) probability"%p
       G = graphs.RandomGNP(n, p/100.0)

    print G.automorphism_group()
    show(plot(G))
}}}

attachment:autograph.png

== Calculus ==
=== A contour map and 3d plot of two inverse distance functions ===
by William Stein
{{{
@interact
def _(q1=(-1,(-3,3)), q2=(-2,(-3,3)),
      cmap=['autumn', 'bone', 'cool', 'copper', 'gray', 'hot', 'hsv',
           'jet', 'pink', 'prism', 'spring', 'summer', 'winter']):
     x,y = var('x,y')
     f = q1/sqrt((x+1)^2 + y^2) + q2/sqrt((x-1)^2+(y+0.5)^2)
     C = contour_plot(f, (-2,2), (-2,2), plot_points=30, contours=15, cmap=cmap)
     show(C, figsize=3, aspect_ratio=1)
     show(plot3d(f, (x,-2,2), (y,-2,2)), figsize=5, viewer='tachyon')
}}}
attachment:mountains.png

=== A simple tangent line grapher ===
by Marshall Hampton
{{{
html('<h2>Tangent line grapher</h2>')
@interact
def tangent_line(f = input_box(default=sin(x)), xbegin = slider(0,10,1/10,0), xend = slider(0,10,1/10,10), x0 = slider(0, 1, 1/100, 1/2)):
    prange = [xbegin, xend]
    x0i = xbegin + x0*(xend-xbegin)
    var('x')
    df = diff(f)
    tanf = f(x0i) + df(x0i)*(x-x0i)
    fplot = plot(f, prange[0], prange[1])
    print 'Tangent line is y = ' + tanf._repr_()
    tanplot = plot(tanf, prange[0], prange[1], rgbcolor = (1,0,0))
    fmax = f.find_maximum_on_interval(prange[0], prange[1])[0]
    fmin = f.find_minimum_on_interval(prange[0], prange[1])[0]
    show(fplot + tanplot, xmin = prange[0], xmax = prange[1], ymax = fmax, ymin = fmin)
}}}
attachment:tangents.png

== Linear Algebra ==

=== Numerical instability of the classical Gram-Schmidt algorithm ===
by Marshall Hampton (tested by William Stein, who thinks this is really nice!)
{{{
def GS_classic(a_list):
    '''
    Given a list of vectors or a matrix, returns the QR factorization using the classical (and numerically unstable) Gram-Schmidt algorithm.
    '''
    if type(a_list) != list:
        cols = a_list.cols()
        a_list = [x for x in cols]
    indices = range(len(a_list))
    q = []
    r = [[0 for i in indices] for j in indices]
    v = [a_list[i].copy() for i in indices]
    for i in indices:
        for j in range(0,i):
            r[j][i] = q[j].inner_product(a_list[i])
            v[i] = v[i] - r[j][i]*q[j]
        r[i][i] = (v[i]*v[i])^(1/2)
        q.append(v[i]/r[i][i])
    q = matrix([q[i] for i in indices]).transpose()
    return q, matrix(r)
def GS_modern(a_list):
    '''
    Given a list of vectors or a matrix, returns the QR factorization using the 'modern' Gram-Schmidt algorithm.
    '''
    if type(a_list) != list:
        cols = a_list.cols()
        a_list = [x for x in cols]
    indices = range(len(a_list))
    q = []
    r = [[0 for i in indices] for j in indices]
    v = [a_list[i].copy() for i in indices]
    for i in indices:
        r[i][i] = v[i].norm(2)
        q.append(v[i]/r[i][i])
        for j in range(i+1, len(indices)):
            r[i][j] = q[i].inner_product(v[j])
            v[j] = v[j] - r[i][j]*q[i]
    q = matrix([q[i] for i in indices]).transpose()
    return q, matrix(r)
html('<h2>Numerical instability of the classical Gram-Schmidt algorithm</h2>')
@interact
def gstest(precision = slider(range(3,53), default = 10), a1 = input_box([1,1/1000,1/1000]), a2 = input_box([1,1/1000,0]), a3 = input_box([1,0,1/1000])):
    myR = RealField(precision)
    displayR = RealField(5)
    html('precision in bits: ' + str(precision) + '<br>')
    A = matrix([a1,a2,a3])
    A = [vector(myR,x) for x in A]
    qn, rn = GS_classic(A)
    qb, rb = GS_modern(A)
    html('Classical Gram-Schmidt:')
    show(matrix(displayR,qn))
    html('Stable Gram-Schmidt:')
    show(matrix(displayR,qb))
}}}
attachment:GramSchmidt.png

== Number Theory ==

=== Continued Fraction Plotter ===
by William Stein
{{{
@interact
def _(number=e, ymax=selector([None,5,20,..,400],nrows=2), clr=Color('purple'), prec=[500,1000,..,5000]):
    c = list(continued_fraction(RealField(prec)(number)))
    print c
    show(line([(i,z) for i, z in enumerate(c)],rgbcolor=clr),ymax=ymax,figsize=[10,2])
}}}
attachment:contfracplot.png

=== Illustrating the prime number thoerem ===
by William Stein
{{{
@interact
def _(N=(100,(2..2000))):
    html("<font color='red'>$\pi(x)$</font> and <font color='blue'>$x/(\log(x)-1)$</font> for $x < %s$"%N)
    show(plot(prime_pi, 0, N, rgbcolor='red') + plot(x/(log(x)-1), 5, N, rgbcolor='blue'))
}}}
attachment:primes.png

=== Computing Generalized Bernoulli Numbers ===
by William Stein (Sage-2.10.3)
{{{
@interact
def _(m=selector([1..15],nrows=2), n=(7,(3..10))):
    G = DirichletGroup(m)
    s = "<h3>First n=%s Bernoulli numbers attached to characters with modulus m=%s</h3>"%(n,f)
    s += '<table border=1>'
    s += '<tr bgcolor="#edcc9c"><td align=center>$\\chi$</td><td>Conductor</td>' + \
           ''.join('<td>$B_{%s,\chi}$</td>'%k for k in [1..n]) + '</tr>'
    for eps in G.list():
        v = ''.join(['<td align=center bgcolor="#efe5cd">$%s$</td>'%latex(eps.bernoulli(k)) for k in [1..n]])
        s += '<tr><td bgcolor="#edcc9c">%s</td><td bgcolor="#efe5cd" align=center>%s</td>%s</tr>\n'%(
             eps, eps.conductor(), v)
    s += '</table>'
    html(s)
}}}

attachment:bernoulli.png

=== Computing modular forms ===
by William Stein
{{{
j = 0
@interact
def _(N=[1..100], k=selector([2,4,..,12],nrows=1), prec=(3..40),
      group=[(Gamma0, 'Gamma0'), (Gamma1, 'Gamma1')]):
    M = CuspForms(group(N),k)
    print j; global j; j += 1
    print M; print '\n'*3
    print "Computing basis...\n\n"
    if M.dimension() == 0:
         print "Space has dimension 0"
    else:
        prec = max(prec, M.dimension()+1)
        for f in M.basis():
             view(f.q_expansion(prec))
    print "\n\n\nDone computing basis."
}}}

attachment:modformbasis.png


=== Computing the cuspidal subgroup ===
by William Stein
{{{
html('<h1>Cuspidal Subgroups of Modular Jacobians J0(N)</h1>')
@interact
def _(N=selector([1..8*13], ncols=8, width=10, default=10)):
    A = J0(N)
    print A.cuspidal_subgroup()
}}}

attachment:cuspgroup.png

=== A Charpoly and Hecke Operator Graph ===
by William Stein

{{{
# Note -- in Sage-2.10.3; multiedges are missing in plots; loops are missing in 3d plots
@interact
def f(N = prime_range(11,400),
      p = selector(prime_range(2,12),nrows=1),
      three_d = ("Three Dimensional", False)):
    S = SupersingularModule(N)
    T = S.hecke_matrix(p)
    G = Graph(T, multiedges=True, loops=not three_d)
    html("<h1>Charpoly and Hecke Graph: Level %s, T_%s</h1>"%(N,p))
    show(T.charpoly().factor())
    if three_d:
        show(G.plot3d(), aspect_ratio=[1,1,1])
    else:
        show(G.plot(),figsize=7)
}}}

attachment:heckegraph.png

=== Demonstrating the Diffie-Hellman Key Exchange Protocol ===
by Timothy Clemans (refereed by William Stein)
{{{
@interact
def diffie_hellman(button=selector(["New example"],label='',buttons=True),
    bits=("Number of bits of prime", (8,12,..512))):
    maxp = 2^bits
    p = random_prime(maxp)
    k = GF(p)
    g = k.multiplicative_generator()
    a = ZZ.random_element(10, maxp)
    b = ZZ.random_element(10, maxp)

    print """
<html>
<style>
.gamodp {
background:yellow
}
.gbmodp {
background:orange
}
.dhsame {
color:green;
font-weight:bold
}
</style>
<h2>%s-Bit Diffie-Hellman Key Exchange</h2>
<ol style="color:#000;font:12px Arial, Helvetica, sans-serif">
<li>Alice and Bob agree to use the prime number p=%s and base g=%s.</li>
<li>Alice chooses the secret integer a=%s, then sends Bob (<span class="gamodp">g<sup>a</sup> mod p</span>):<br/>%s<sup>%s</sup> mod %s = <span class="gamodp">%s</span>.</li>
<li>Bob chooses the secret integer b=%s, then sends Alice (<span class="gbmodp">g<sup>b</sup> mod p</span>):<br/>%s<sup>%s</sup> mod %s = <span class="gbmodp">%s</span>.</li>
<li>Alice computes (<span class="gbmodp">g<sup>b</sup> mod p</span>)<sup>a</sup> mod p:<br/>%s<sup>%s</sup> mod %s = <span class="dhsame">%s</span>.</li>
<li>Bob computes (<span class="gamodp">g<sup>a</sup> mod p</span>)<sup>b</sup> mod p:<br/>%s<sup>%s</sup> mod %s = <span class="dhsame">%s</span>.</li>
</ol></html>
    """ % (bits, p, g, a, g, a, p, (g^a), b, g, b, p, (g^b), (g^b), a, p,
       (g^ b)^a, g^a, b, p, (g^a)^b)
}}}

attachment:dh.png

=== Plotting an elliptic curve over a finite field ===
{{{
E = EllipticCurve('37a')
@interact
def _(p=slider(prime_range(1000), default=389)):
    show(E)
    print "p = %s"%p
    show(E.change_ring(GF(p)).plot(),xmin=0,ymin=0)
}}}

attachment:ellffplot.png

== Web apps ==

=== Bioinformatics: protein browser ===
by Marshall Hampton (tested by William Stein)
{{{
import urllib2 as U
@interact
def protein_browser(GenBank_ID = input_box('165940577', type = str), file_type = selector([(1,'fasta'),(2,'GenPept')])):
    if file_type == 2:
        gen_str = 'http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&sendto=t&id='
    else:
        gen_str = 'http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&sendto=t&dopt=fasta&id='
    f = U.urlopen(gen_str + GenBank_ID)
    g = f.read()
    f.close()
    html(g)
}}}
attachment:biobrowse.png

== Miscellaneous Graphics ==

[[Anchor(eggpaint)]]

=== Somewhat Silly Egg Painter ===
by Marshall Hampton (refereed by William Stein)
{{{
var('s,t')
g(s) = ((0.57496*sqrt(121 - 16.0*s^2))/sqrt(10.+ s))
def P(color, rng):
    return parametric_plot3d((cos(t)*g(s), sin(t)*g(s), s), (s,rng[0],rng[1]), (t,0,2*pi), plot_points = [150,150], rgbcolor=color, frame = False, opacity = 1)
colorlist = ['red','blue','red','blue']
@interact
def _(band_number = selector(range(1,5)), current_color = Color('red')):
    html('<h1 align=center>Egg Painter</h1>')
    colorlist[band_number-1] = current_color
    egg = sum([P(colorlist[i],[-2.75+5.5*(i/4),-2.75+5.5*(i+1)/4]) for i in range(4)])
    show(egg)
}}}
attachment:eggpaint.png
{{attachment:taylor_series_animated.gif}}

Sage Interactions

This is a collection of pages demonstrating the use of the **interact** command in Sage. It should be easy to just scroll through and copy/paste examples into Sage notebooks. If you have suggestions on how to improve interact, add them here or email the sage-support mailing list. Of course, your own examples are also welcome!

Documentation links:

Examples:

Explanatory example: Taylor Series

This is the code and a mockup animation of the interact command. It defines a slider, seen on top, that can be dragged. Once dragged, it changes the value of the variable "order" and the whole block of code gets evaluated. This principle can be seen in various examples presented on the pages above!

taylor_series_animated.gif

interact (last edited 2021-08-23 15:58:42 by anewton)