Differences between revisions 16 and 145 (spanning 129 versions)
 ⇤ ← Revision 16 as of 2008-03-11 23:32:34 → Size: 4514 Editor: was Comment: ← Revision 145 as of 2021-08-23 15:58:42 → ⇥ Size: 2692 Editor: anewton Comment: Deletions are marked like this. Additions are marked like this. Line 3: Line 3: Post code that demonstrates the use of the interact command in Sage here. It should be easy for people to just scroll through and paste examples out of here into their own sage notebooks. This is a collection of pages demonstrating the use of the **interact** command in Sage.It should be easy to just scroll through and copy/paste examples into Sage notebooks.If you have suggestions on how to improve interact, add them [[interact/Suggestions|here]]or email the sage-support mailing list. Of course, your own examples are also welcome! Line 5: Line 8: We'll likely restructure and reorganize this once we have some nontrivial content and get a sense of how it is laid out. Documentation links: Line 7: Line 10: == Graphics == * [[http://doc.sagemath.org/html/en/reference/repl/sage/repl/ipython_kernel/interact.html| interacts in the Jupyter notebook]] (see this page and the two following ones)  * [[https://github.com/sagemath/sagenb/blob/master/sagenb/notebook/interact.py|interacts in the legacy SageNB notebook]] (many helpful examples)  * [[https://github.com/sagemath/sagecell/blob/master/interact_compatibility.py|Sage Cell Server implementation]]  * [[https://github.com/sagemathinc/cocalc/blob/master/src/smc_sagews/smc_sagews/sage_salvus.py#L348|CoCalc Sage worksheet implementation]] Line 9: Line 15: == Calculus ===== A contour map and 3d plot of two inverse distance functions ===by William Stein{{{ Examples: * [[interact/algebra|Algebra]] * [[interact/bio|Bioinformatics]] * [[interact/calculus|Calculus]] * [[interact/complex|Complex Analysis]] * [[interact/cryptography|Cryptography]] * [[interact/diffeq|Differential Equations]] * [[interact/graphics|Drawing Graphics]] * [[interact/dynsys|Dynamical Systems]] * [[interact/fractal|Fractals]] * [[interact/games|Games and Diversions]] * [[interact/geometry|Geometry]] * [[interact/graph_theory|Graph Theory]] * [[interact/groups|Groups]] * [[interact/linear_algebra|Linear Algebra]] * [[interact/Loop Quantum Gravity|Loop Quantum Gravity]] * [[interact/misc|Miscellaneous]] * [[interact/number_theory|Number Theory]] * [[interact/stats|Statistics/Probability]] * [[interact/topology|Topology]] * [[interact/web|Web Applications]]== Explanatory example: Taylor Series ==This is the code and a mockup animation of the interact command. It defines a slider, seen on top, that can be dragged. Once dragged, it changes the value of the variable "order" and the whole block of code gets evaluated. This principle can be seen in various examples presented on the pages above!{{{#!sagecellx = SR.var('x')x0 = 0f = sin(x) * e^(-x)p = plot(f, -1, 5, thickness=2)dot = point((x0, f(x=x0)), pointsize=80, rgbcolor=(1, 0, 0)) Line 14: Line 50: def _(q1=(-1,(-3,3)), q2=(-2,(-3,3)),       cmap=['autumn', 'bone', 'cool', 'copper', 'gray', 'hot', 'hsv',            'jet', 'pink', 'prism', 'spring', 'summer', 'winter']):     x,y = var('x,y')     f = q1/sqrt((x+1)^2 + y^2) + q2/sqrt((x-1)^2+(y+0.5)^2)     C = contour_plot(f, (-2,2), (-2,2), plot_points=30, contours=15, cmap=cmap)     show(C, figsize=3, aspect_ratio=1)     show(plot3d(f, (x,-2,2), (y,-2,2)), figsize=5, viewer='tachyon') def _(order=slider([1 .. 12])):  ft = f.taylor(x, x0, order)  pt = plot(ft, -1, 5, color='green', thickness=2)  pretty_print(html(r'$f(x)\;=\;%s$' % latex(f)))  pretty_print(html(r'$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$' % (x0, latex(ft), order+1)))  show(dot + p + pt, ymin=-.5, ymax=1) Line 23: Line 57: attachment:mountains.png== Number Theory ===== Illustrating the prime number thoerem ===by William Stein{{{@interactdef _(N=(100,(2..2000))):    html("$\pi(x)$ and $x/(\log(x)-1)$ for $x < %s$"%N)    show(plot(prime_pi, 0, N, rgbcolor='red') + plot(x/(log(x)-1), 5, N, rgbcolor='blue'))}}}attachment:primes.png=== Computing the cuspidal subgroup ===by William Stein{{{html('

Cuspidal Subgroups of Modular Jacobians J0(N)

')@interactdef _(N=selector([1..8*13], ncols=8, width=10, default=10)):    A = J0(N)    print A.cuspidal_subgroup()}}}attachment:cuspgroup.png=== A Charpoly and Hecke Operator Graph ===by William Stein{{{# Note -- in Sage-2.10.3; multiedges are missing in plots; loops are missing in 3d plots@interactdef f(N = prime_range(11,400),      p = selector(prime_range(2,12),nrows=1),      three_d = ("Three Dimensional", False)):    S = SupersingularModule(N)    T = S.hecke_matrix(p)    G = Graph(T, multiedges=True, loops=not three_d)    html("

Charpoly and Hecke Graph: Level %s, T_%s

"%(N,p))    show(T.charpoly().factor())    if three_d:        show(G.plot3d(), aspect_ratio=[1,1,1])    else:        show(G.plot(),figsize=7)}}}attachment:heckegraph.png=== Demonstrating the Diffie-Hellman Key Exchange Protocol ===by Timothy Clemans (refereed by William Stein){{{@interactdef diffie_hellman(button=selector(["New example"],label='',buttons=True),     bits=("Number of bits of prime", (8,12,..512))):    maxp = 2^bits    p = random_prime(maxp)    k = GF(p)    g = k.multiplicative_generator()    a = ZZ.random_element(10, maxp)    b = ZZ.random_element(10, maxp)    print """

%s-Bit Diffie-Hellman Key Exchange

1. Alice and Bob agree to use the prime number p=%s and base g=%s.
2. Alice chooses the secret integer a=%s, then sends Bob (ga mod p):
%s%s mod %s = %s.
3. Bob chooses the secret integer b=%s, then sends Alice (gb mod p):
%s%s mod %s = %s.
4. Alice computes (gb mod p)a mod p:
%s%s mod %s = %s.
5. Bob computes (ga mod p)b mod p:
%s%s mod %s = %s.
""" % (bits, p, g, a, g, a, p, (g^a), b, g, b, p, (g^b), (g^b), a, p,        (g^ b)^a, g^a, b, p, (g^a)^b)}}}attachment:dh.png=== Somewhat Silly Egg Painter ==={{{var('s,t')g(s) = ((0.57496*sqrt(121 - 16.0*s^2))/sqrt(10.+ s))def P(color, rng):    return parametric_plot3d((cos(t)*g(s), sin(t)*g(s), s), (s,rng[0],rng[1]), (t,0,2*pi), plot_points = [150,150], rgbcolor=color, frame = False, opacity = 1)colorlist = ['red','blue','red','blue']@interactdef _(band_number = selector(range(1,5)), current_color = Color('red')):    html('

Egg Painter

')    colorlist[band_number-1] = current_color    egg = sum([P(colorlist[i],[-2.75+5.5*(i/4),-2.75+5.5*(i+1)/4]) for i in range(4)])    show(egg)}}}attachment:eggpaint.png {{attachment:taylor_series_animated.gif}}

# Sage Interactions

This is a collection of pages demonstrating the use of the **interact** command in Sage. It should be easy to just scroll through and copy/paste examples into Sage notebooks. If you have suggestions on how to improve interact, add them here or email the sage-support mailing list. Of course, your own examples are also welcome!