Differences between revisions 116 and 144 (spanning 28 versions)
Revision 116 as of 2010-01-22 21:33:28
Size: 1757
Comment: This fix is better than my previous one. Sorry to kludge up the code this morning.
Revision 144 as of 2021-06-24 09:28:41
Size: 2661
Editor: pang
Comment: added link to complex analysis
Deletions are marked like this. Additions are marked like this.
Line 3: Line 3:
This is a collection of pages demonstrating the use of the interact command in Sage. It should be easy to just scroll through and copy/paste examples into sage notebooks. If you have suggestions on how to improve interact, add them [[interactSuggestions|here]] or email sage-support@googlegroups.com . Of course, your own examples are also welcome! This is a collection of pages demonstrating the use of the **interact** command in Sage.
It should be easy to just scroll through and copy/paste examples into Sage notebooks.
If you have suggestions on how to improve interact, add them [[interact/Suggestions|here]]
or email the
sage-support mailing list. Of course, your own examples are also welcome!
Line 5: Line 8:
Documentation links:

  * [[http://doc.sagemath.org/html/en/reference/repl/sage/repl/ipython_kernel/interact.html| interacts in the Jupyter notebook]] (see this page and the two following ones)
  * [[https://github.com/sagemath/sagenb/blob/master/sagenb/notebook/interact.py|interacts in the legacy SageNB notebook]] (many helpful examples)
  * [[https://github.com/sagemath/sagecell/blob/master/interact_compatibility.py|Sage Cell Server implementation]]
  * [[https://github.com/sagemathinc/cocalc/blob/master/src/smc_sagews/smc_sagews/sage_salvus.py#L348|CoCalc Sage worksheet implementation]]

Examples:

 * [[interact/algebra|Algebra]]
 * [[interact/bio|Bioinformatics]]
 * [[interact/calculus|Calculus]]
 * [[interact/complex|Complex Analysis]]
 * [[interact/cryptography|Cryptography]]
 * [[interact/diffeq|Differential Equations]]
 * [[interact/graphics|Drawing Graphics]]
 * [[interact/dynsys|Dynamical Systems]]
 * [[interact/fractal|Fractals]]
 * [[interact/games|Games and Diversions]]
 * [[interact/geometry|Geometry]]
Line 6: Line 29:
 * [[interact/fractal|Fractals]]
 * [[interact/calculus|Calculus]]
 * [[interact/diffeq|Differential Equations]]
 * [[interact/dynsys|Dynamical Systems]]
Line 11: Line 30:
 * [[interact/algebra|Algebra]]  * [[interact/Loop Quantum Gravity|Loop Quantum Gravity]]
 * [[interact/misc|Miscellaneous]]
Line 13: Line 33:
 * [[interact/stats|Statistics/Probability]]
 * [[interact/topology|Topology]]
Line 14: Line 36:
 * [[interact/bio|Bioinformatics]]
 * [[interact/geometry|Geometry]]
 * [[interact/graphics|Drawing Graphics]]
 * [[interact/games|Games and Diversions]]
 * [[interact/misc|Miscellaneous]]
Line 24: Line 41:
{{{#!python numbers=none
var('x')
{{{#!sagecell
x = SR.var('x')
Line 27: Line 44:
f = sin(x)*e^(-x)
p = plot(f,-1,5, thickness=2)
dot = point((x0,f(x=x0)),pointsize=80,rgbcolor=(1,0,0))
f = sin(x) * e^(-x)
p = plot(f, -1, 5, thickness=2)
dot = point((x0, f(x=x0)), pointsize=80, rgbcolor=(1, 0, 0))
Line 31: Line 49:
def _(order=(1..12)):
  ft = f.taylor(x,x0,order)
  pt = plot(ft,
-1, 5, color='green', thickness=2)
  html('$f(x)\;=\;%s$'%latex(f))
  html(
'$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$'%(x0,latex(ft),order+1))
  show(dot + p + pt, ymin = -.5, ymax = 1)
def _(order=slider([1 .. 12])):
  ft = f.taylor(x, x0, order)
  pt = plot(ft,
-1, 5, color='green', thickness=2)
  pretty_print(html(r'$f(x)\;=\;%s$' % latex(f)))
  pretty_print(html(r
'$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$' % (x0, latex(ft), order+1)))
  show(dot + p + pt, ymin=-.5, ymax=1)

Sage Interactions

This is a collection of pages demonstrating the use of the **interact** command in Sage. It should be easy to just scroll through and copy/paste examples into Sage notebooks. If you have suggestions on how to improve interact, add them here or email the sage-support mailing list. Of course, your own examples are also welcome!

Documentation links:

Examples:

Explanatory example: Taylor Series

This is the code and a mockup animation of the interact command. It defines a slider, seen on top, that can be dragged. Once dragged, it changes the value of the variable "order" and the whole block of code gets evaluated. This principle can be seen in various examples presented on the pages above!

taylor_series_animated.gif

interact (last edited 2021-08-23 15:58:42 by anewton)