Differences between revisions 114 and 142 (spanning 28 versions)
Revision 114 as of 2009-07-06 01:51:16
Size: 1755
Editor: qed777
Comment: Testing built-in Python source parser.
Revision 142 as of 2020-06-02 15:16:19
Size: 2532
Editor: kcrisman
Comment:
Deletions are marked like this. Additions are marked like this.
Line 3: Line 3:
This is a collection of pages demonstrating the use of the interact command in Sage. It should be easy to just scroll through and copy/paste examples into sage notebooks. If you have suggestions on how to improve interact, add them [[interactSuggestions|here]] or email sage-support@googlegroups.com . Of course, your own examples are also welcome! This is a collection of pages demonstrating the use of the **interact** command in Sage.
It should be easy to just scroll through and copy/paste examples into Sage notebooks.
If you have suggestions on how to improve interact, add them [[interact/Suggestions|here]]
or email the
sage-support mailing list. Of course, your own examples are also welcome!
Line 5: Line 8:
Documentation links:

  * [[http://doc.sagemath.org/html/en/reference/repl/sage/repl/ipython_kernel/interact.html| interacts in the Jupyter notebook]] (see this page and the two following ones)
  * [[https://github.com/sagemath/sagenb/blob/master/sagenb/notebook/interact.py|interacts in the legacy SageNB notebook]] (many helpful examples)
  * [[https://github.com/sagemath/sagecell/blob/master/interact_compatibility.py|Sage Cell Server implementation]]
  * CoCalc Sage worksheet implementation (needs link)

Examples:

 * [[interact/algebra|Algebra]]
 * [[interact/bio|Bioinformatics]]
 * [[interact/calculus|Calculus]]
 * [[interact/cryptography|Cryptography]]
 * [[interact/diffeq|Differential Equations]]
 * [[interact/graphics|Drawing Graphics]]
 * [[interact/dynsys|Dynamical Systems]]
 * [[interact/fractal|Fractals]]
 * [[interact/games|Games and Diversions]]
 * [[interact/geometry|Geometry]]
Line 6: Line 28:
 * [[interact/fractal|Fractals]]
 * [[interact/calculus|Calculus]]
 * [[interact/diffeq|Differential Equations]]
 * [[interact/dynsys|Dynamical Systems]]
Line 11: Line 29:
 * [[interact/algebra|Algebra]]  * [[interact/Loop Quantum Gravity|Loop Quantum Gravity]]
 * [[interact/misc|Miscellaneous]]
Line 13: Line 32:
 * [[interact/stats|Statistics/Probability]]
 * [[interact/topology|Topology]]
Line 14: Line 35:
 * [[interact/bio|Bioinformatics]]
 * [[interact/geometry|Geometry]]
 * [[interact/graphics|Drawing Graphics]]
 * [[interact/games|Games and Diversions]]
 * [[interact/misc|Miscellaneous]]
Line 24: Line 40:
{{{#!python numbers=none
var('x')
{{{#!sagecell
x = SR.var('x')
Line 27: Line 43:
f = sin(x)*e^(-x)
p = plot(f,-1,5, thickness=2)
dot = point((x0,f(x0)),pointsize=80,rgbcolor=(1,0,0))
f = sin(x) * e^(-x)
p = plot(f, -1, 5, thickness=2)
dot = point((x0, f(x=x0)), pointsize=80, rgbcolor=(1, 0, 0))
Line 31: Line 48:
def _(order=(1..12)):
  ft = f.taylor(x,x0,order)
  pt = plot(ft,
-1, 5, color='green', thickness=2)
  html('$f(x)\;=\;%s$'%latex(f))
  html(
'$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$'%(x0,latex(ft),order+1))
  show(dot + p + pt, ymin = -.5, ymax = 1)
def _(order=slider([1 .. 12])):
  ft = f.taylor(x, x0, order)
  pt = plot(ft,
-1, 5, color='green', thickness=2)
  pretty_print(html(r'$f(x)\;=\;%s$' % latex(f)))
  pretty_print(html(r
'$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$' % (x0, latex(ft), order+1)))
  show(dot + p + pt, ymin=-.5, ymax=1)

Sage Interactions

This is a collection of pages demonstrating the use of the **interact** command in Sage. It should be easy to just scroll through and copy/paste examples into Sage notebooks. If you have suggestions on how to improve interact, add them here or email the sage-support mailing list. Of course, your own examples are also welcome!

Documentation links:

Examples:

Explanatory example: Taylor Series

This is the code and a mockup animation of the interact command. It defines a slider, seen on top, that can be dragged. Once dragged, it changes the value of the variable "order" and the whole block of code gets evaluated. This principle can be seen in various examples presented on the pages above!

taylor_series_animated.gif

interact (last edited 2021-08-23 15:58:42 by anewton)