Differences between revisions 1 and 114 (spanning 113 versions)
 ⇤ ← Revision 1 as of 2008-03-11 18:14:23 → Size: 505 Editor: was Comment: ← Revision 114 as of 2009-07-06 01:51:16 → ⇥ Size: 1755 Editor: qed777 Comment: Testing built-in Python source parser. Deletions are marked like this. Additions are marked like this. Line 3: Line 3: Post code (and screen shots) of the use of interact in Sage here. We'll likely restructure and reorganize this, or move it out of the wiki (?) once we have some nontrivial content and get a sense of how it is laid out. This is a collection of pages demonstrating the use of the interact command in Sage. It should be easy to just scroll through and copy/paste examples into sage notebooks. If you have suggestions on how to improve interact, add them [[interactSuggestions|here]] or email [email protected] . Of course, your own examples are also welcome! Line 5: Line 5: == Graphics == * [[interact/graph_theory|Graph Theory]] * [[interact/fractal|Fractals]] * [[interact/calculus|Calculus]] * [[interact/diffeq|Differential Equations]] * [[interact/dynsys|Dynamical Systems]] * [[interact/linear_algebra|Linear Algebra]] * [[interact/algebra|Algebra]] * [[interact/number_theory|Number Theory]] * [[interact/web|Web Applications]] * [[interact/bio|Bioinformatics]] * [[interact/geometry|Geometry]] * [[interact/graphics|Drawing Graphics]] * [[interact/games|Games and Diversions]] * [[interact/misc|Miscellaneous]] Line 7: Line 20: == Calculus == == Explanatory example: Taylor Series == Line 9: Line 22: == Number Theory == This is the code and a mockup animation of the interact command. It defines a slider, seen on top, that can be dragged. Once dragged, it changes the value of the variable "order" and the whole block of code gets evaluated. This principle can be seen in various examples presented on the pages above! Line 11: Line 24: {{{html('

Cuspidal Subgroups of Modular Jacobians J0(N)

') {{{#!python numbers=nonevar('x')x0 = 0f = sin(x)*e^(-x)p = plot(f,-1,5, thickness=2)dot = point((x0,f(x0)),pointsize=80,rgbcolor=(1,0,0)) Line 14: Line 31: def _(N=selector([1..8*13], ncols=8, width=10, default=10)):    A = J0(N)    print A.cuspidal_subgroup() def _(order=(1..12)):  ft = f.taylor(x,x0,order)  pt = plot(ft,-1, 5, color='green', thickness=2)  html('$f(x)\;=\;%s$'%latex(f))  html('$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$'%(x0,latex(ft),order+1))  show(dot + p + pt, ymin = -.5, ymax = 1) Line 18: Line 38: {{attachment:taylor_series_animated.gif}}

# Sage Interactions

This is a collection of pages demonstrating the use of the interact command in Sage. It should be easy to just scroll through and copy/paste examples into sage notebooks. If you have suggestions on how to improve interact, add them here or email [email protected] . Of course, your own examples are also welcome!

## Explanatory example: Taylor Series

This is the code and a mockup animation of the interact command. It defines a slider, seen on top, that can be dragged. Once dragged, it changes the value of the variable "order" and the whole block of code gets evaluated. This principle can be seen in various examples presented on the pages above!

var('x')
x0  = 0
f   = sin(x)*e^(-x)
p   = plot(f,-1,5, thickness=2)
dot = point((x0,f(x0)),pointsize=80,rgbcolor=(1,0,0))
@interact
def _(order=(1..12)):
ft = f.taylor(x,x0,order)
pt = plot(ft,-1, 5, color='green', thickness=2)
html('$f(x)\;=\;%s$'%latex(f))
html('$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$'%(x0,latex(ft),order+1))
show(dot + p + pt, ymin = -.5, ymax = 1) interact (last edited 2021-08-23 15:58:42 by anewton)