Differences between revisions 17 and 47 (spanning 30 versions)
Revision 17 as of 2010-05-06 18:34:02
Size: 9827
Comment:
Revision 47 as of 2020-06-02 02:23:37
Size: 12902
Editor: kcrisman
Comment:
Deletions are marked like this. Additions are marked like this.
Line 8: Line 8:
by Marshall Hampton. When the two frequencies are well seperated, we hear the right hand side of the identity. When they start getting close, we hear the higher-pitched factor in the left-hand side modulated by the lower-pitched envelope.

{{{
by Marshall Hampton. When the two frequencies are well separated, we hear the right hand side of the identity. When they start getting close, we hear the higher-pitched factor in the left-hand side modulated by the lower-pitched envelope.

{{{#!sagecell
Line 17: Line 17:
       self.sr = 44100        self.sr = int(4100)
Line 28: Line 28:
def sinsound(freq_ratio = slider(0,1,1/144,1/12)): def sinsound(freq_ratio = slider(1/144,1,1/144,1/12)):
Line 31: Line 31:
    html('$\cos(\omega t) - \cos(\omega_0 t) = 2 \sin(\\frac{\omega + \omega_0}{2}t) \sin(\\frac{\omega - \omega_0}{2}t)$')     html(r'$\cos(\omega t) - \cos(\omega_0 t) = 2 \sin(\\frac{\omega + \omega_0}{2}t) \sin(\frac{\omega - \omega_0}{2}t)$')
Line 35: Line 35:
    s2str = ''.join(wave.struct.pack('h',x) for x in s2f)     s2str = b''.join(wave.struct.pack('f',x) for x in s2f)
Line 41: Line 41:
    html('<embed src="https:./test'+ lab +'.wav" width="200" height="100"></embed>')
    html('Frequencies: '+ '$\omega_0 = ' + str(hz1) + ' $, $\omega = '+latex(hz2) + '$')
    pretty_print(html(r'<embed src="cell://test'+ lab +'.wav" width="200" height="100"></embed>'))
    pretty_print(html(r'Frequencies: $\omega_0 = {} $, $\omega = {}$'.format(str(hz1),latex(hz2))))
Line 49: Line 49:
{{{ {{{#!sagecell
Line 56: Line 56:
       self.sr = 44100        self.sr = int(44100)
Line 90: Line 90:
    html("Karplus-Strong algorithm with blending and delay stretching")
    html("<br>K. Karplus and A. Strong, <em>Digital synthesis of plucked string and drum timbres</em>, \nComputer Music Journal 7 (2) (1983), 43–55.<br>")
    html("Initial waveform:")
    show(list_plot(s2f[0:2000],plotjoined=True), figsize = [6,4])
    html("Waveform after stabilization:")
    show(list_plot(s2f[20000:22000],plotjoined=True), figsize = [6,4])
    s2str = ''.join(wave.struct.pack('h',x) for x in s2f)
    pretty_print(html("Karplus-Strong algorithm with blending and delay stretching"))
    pretty_print(html("<br>K. Karplus and A. Strong, <em>Digital synthesis of plucked string and drum timbres</em>, \nComputer Music Journal 7 (2) (1983), 43–55.<br>"))
    pretty_print(html("Initial waveform:"))
    show(list_plot(s2f[0:2000],plotjoined=True), figsize = [7,3.5])
    pretty_print(html("Waveform after stabilization:"))
    show(list_plot(s2f[20000:22000],plotjoined=True), figsize = [7,3.5])
    s2str = b''.join(wave.struct.pack('f',x) for x in s2f)
Line 100: Line 100:
    html('<embed src="https:./test'+ lab +'.wav" width="200" height="100"></embed>')     pretty_print(html('<embed src="cell://test'+ lab +'.wav" width="200" height="100"></embed>'))
Line 107: Line 107:
{{{ {{{#!sagecell
Line 122: Line 122:
    html('<center>')
    html("$X \cap Y$ = %s"%f(XY))
    html("$X \cap Z$ = %s"%f(XZ))
    html("$Y \cap Z$ = %s"%f(YZ))
    html("$X \cap Y \cap Z$ = %s"%f(XYZ))
    html('</center>')
    pretty_print(html("<center><p>$X \\cap Y$ = {}</p><p> $X \\cap Z$ = {}</p><p> $Y \\cap Z$ = {}</p><p> $X \\cap Y \\cap Z$ = {}<center>".format(f(XY),f(XZ),f(YZ),f(XYZ))))
Line 163: Line 158:
{{{ {{{#!sagecell
Line 166: Line 161:
    print (lambda f:f(0,f))(     print((lambda f:f(0,f))(
Line 171: Line 166:
    )     ))
Line 177: Line 172:
{{{
html('<h2>Profile the given input</h2>')
{{{#!sagecell
pretty_print(html('<h2>Profile the given input</h2>'))
Line 184: Line 179:
    print "<html>" # trick to avoid word wrap
Line 186: Line 180:
        cProfile.run(cmd)         cProfile.runctx(cmd,globals(), locals())
Line 188: Line 182:
        profile.run(cmd)
   print "</html>"
        profile.runctx(cmd,globals(), locals())
Line 197: Line 190:
{{{ {{{#!sagecell
Line 200: Line 193:
    print globals()[system].eval(code)     print(globals()[system].eval(code))
Line 208: Line 201:
{{{
def minkdemo(list1,list2):
{{{#!sagecell
def minkdemo(list1, list2):
Line 211: Line 204:
    Returns the Minkowski sum of two lists.     Return the Minkowski sum of two lists.
Line 216: Line 209:
            temp = [stuff1[i] + stuff2[i] for i in range(len(stuff1))]
            output.append(temp)
            output.append([a + b for a, b in zip(stuff1, stuff2)])
Line 219: Line 211:
@interact
def minksumvis(x1tri = slider(-1,1,1/10,0, label = 'Triangle point x coord.'), yb = slider(1,4,1/10,2, label = 'Blue point y coord.')):
    t_list = [[1,0],[x1tri,1],[0,0]]

@interact
def minksumvis(x1tri=slider(-1,1,1/10,0, label='Triangle point x coord.'), yb=slider(1,4,1/10,2, label='Blue point y coord.')):
    t_list = [[1,0], [x1tri,1], [0,0]]
Line 232: Line 225:
    for an_edge in p12poly.vertex_adjacencies():
        edge_lines += line([verts[an_edge[0]], verts[an_edge[1][0]]])
        edge_lines += line([verts[an_edge[0]], verts[an_edge[1][1]]])
    for v0, v1 in p12poly.graph().edges(False):
       edge_lines += line([v0, v1])
Line 254: Line 246:
by Pablo Angulo

{{{
%
cython
by Pablo Angulo, Eviatar Bach

{{{#!sagecell
Line 259: Line 250:

def cellular(rule, int N):
from random import randint

def cellular(rule, N, initial='Single-cell'):
Line 265: Line 257:
    initial: starting condition; can be either single-cell or a random binary row
Line 266: Line 259:
    cdef int j,k,l
    M=zeros( (N,2*N+1), dtype=int)
    M[0,N]=1
    M=zeros( (N,2*N+2), dtype=int)
    if initial=='Single-cell':
        M[0,N]=1
    else:
        M[0]=[randint(0,1) for a in range(2*N+2)]
Line 271: Line 266:
        for k in range(N-j,N+j+1):         for k in range(2*N):
Line 274: Line 269:
    return M
}}}
{{{
    return M[:,:-1]
    
Line 284: Line 278:
def _( N=input_box(label='Number of iterations',default=100), def _( initial=selector(['Single-cell', 'Random'], label='Starting condition'), N=input_box(label='Number of iterations',default=100),
Line 286: Line 280:
       size = slider(1, 11, step_size=1, default=6 ) ):        size = slider(1, 11, label= 'Size', step_size=1, default=6 ), auto_update=False):
Line 288: Line 282:
    M = cellular(rule, N)
    plot_M = matrix_plot(M)
    M = cellular(rule, N, initial)
    plot_M = matrix_plot(M, cmap='binary')
Line 292: Line 286:
{{attachment:cellular.png}} {{attachment:cellular2.png}}

== Another Interactive Venn Diagram ==
by Jane Long (adapted from http://wiki.sagemath.org/interact/misc)

This interact models a problem in which a certain number of people are surveyed to see if they participate in three different activities (running, biking, and swimming). Users can indicate the numbers of people in each category, from 0 to 100. Returns a graphic of a labeled Venn diagram with the number of people in each region. Returns an explanatory error message if user input is inconsistent.

{{{#!sagecell
@interact
def _(T=slider([0..100],default=100,label='People surveyed'),X=slider([0..100],default=28,label='Run'), Y=slider([0..100],default=33,label='Bike'), Z=slider([0..100],default=59,label='Swim'),XY=slider([0..100],default=16,label='Run and Bike'),XZ=slider([0..100],default=13,label='Run and Swim'),YZ=slider([0..100],default=12,label='Bike and Swim'),XYZ=slider([0..100],default=7,label='Run, Bike, and Swim')):
   
    centers = [(cos(n*2*pi/3), sin(n*2*pi/3)) for n in [0,1,2]]
    scale = 1.7
    clr = ['yellow', 'blue', 'green']
    G = Graphics()
    for i in range(3):
        G += circle(centers[i], scale, rgbcolor=clr[i],
             fill=True, alpha=0.3)
    for i in range(3):
        G += circle(centers[i], scale, rgbcolor='black')
   
    # Label sets
    G += text('Run',(3,0),rgbcolor='black')
    G += text('Bike',(-1,3),rgbcolor='black')
    G += text('Swim',(-1,-3),rgbcolor='black')
   
    # Plot pairs of intersections
    ZX=XZ-XYZ
    G += text(ZX, (1.3*cos(2*2*pi/3 + pi/3), 1.3*sin(2*2*pi/3 + pi/3)), rgbcolor='black')
    YX=XY-XYZ
    G += text(YX, (1.3*cos(0*2*pi/3 + pi/3), 1.3*sin(0*2*pi/3 + pi/3)), rgbcolor='black')
    ZY=YZ-XYZ
    G += text(ZY, (1.3*cos(1*2*pi/3 + pi/3), 1.3*sin(1*2*pi/3 + pi/3)), rgbcolor='black')
  
    # Plot what is in one but neither other
    XX=X-ZX-YX-XYZ
    G += text(XX, (1.5*centers[0][0],1.7*centers[0][1]), rgbcolor='black')
    YY=Y-ZY-YX-XYZ
    G += text(YY, (1.5*centers[1][0],1.7*centers[1][1]), rgbcolor='black')
    ZZ=Z-ZY-ZX-XYZ
    G += text(ZZ, (1.5*centers[2][0],1.7*centers[2][1]), rgbcolor='black')
 
    # Plot intersection of all three
    G += text(XYZ, (0,0), rgbcolor='black')
   
    # Indicate number not in X, in Y, or in Z
    C = T-XX-YY-ZZ-ZX-ZY-YX-XYZ
    G += text(C,(3,-3),rgbcolor='black')
    
    # Check reasonableness before displaying result
    if XYZ>XY or XYZ>XZ or XYZ>YZ or XY>X or XY>Y or XZ>X or XZ>Z or YZ>Y or YZ>Z or C<0 or XYZ<0 or XZ<0 or YZ<0 or XY<0 or X<0 or Y<0 or Z<0:
        print('This situation is impossible! (Why?)')
    else:
        G.show(aspect_ratio=1, axes=False)
}}}
{{attachment:vennjhl.png}}

Sage Interactions - Miscellaneous

goto interact main page

Hearing a trigonometric identity

by Marshall Hampton. When the two frequencies are well separated, we hear the right hand side of the identity. When they start getting close, we hear the higher-pitched factor in the left-hand side modulated by the lower-pitched envelope.

sinsound.png

Karplus-Strong algorithm for plucked and percussive sound generation

by Marshall Hampton

KarplusStrong.png

An Interactive Venn Diagram

veng.png

Unreadable code

by Igor Tolkov

unreadable.png

Profile a snippet of code

profile.png

Evaluate a bit of code in a given system

by William Stein (there is no way yet to make the text box big):

evalsys.png

Minkowski Sum

by Marshall Hampton

minksum.png

Cellular Automata

by Pablo Angulo, Eviatar Bach

cellular2.png

Another Interactive Venn Diagram

by Jane Long (adapted from http://wiki.sagemath.org/interact/misc)

This interact models a problem in which a certain number of people are surveyed to see if they participate in three different activities (running, biking, and swimming). Users can indicate the numbers of people in each category, from 0 to 100. Returns a graphic of a labeled Venn diagram with the number of people in each region. Returns an explanatory error message if user input is inconsistent.

vennjhl.png

interact/misc (last edited 2020-06-05 20:32:41 by mathzeta2)