Differences between revisions 11 and 19 (spanning 8 versions)
Revision 11 as of 2009-07-06 09:23:12
Size: 7713
Comment:
Revision 19 as of 2010-11-20 06:54:37
Size: 9830
Editor: Eviatar
Comment: Fixed Cellular Automaton to work correctly for rules where background is ones (such as 255) and made matrix display in opposite colours, as is conventional.
Deletions are marked like this. Additions are marked like this.
Line 8: Line 8:
by Marshall Hampton by Marshall Hampton. When the two frequencies are well seperated, we hear the right hand side of the identity. When they start getting close, we hear the higher-pitched factor in the left-hand side modulated by the lower-pitched envelope.
Line 35: Line 35:
    s2str = ''
    f
or x in s2f:
        s2str +=
wave.struct.pack('h',x)
    lab=str(float(freq_ratio))
    s2str = ''.join(wave.struct.pack('h',x) for x in s2f)
    lab="%1.2f"%float(freq_ratio)
Line 48: Line 46:
== Karplus-Strong algorithm for plucked and percussive sound generation ==
by Marshall Hampton

{{{
import wave

class SoundFile:
   def __init__(self, signal,lab=''):
       self.file = wave.open('./test' + lab + '.wav', 'wb')
       self.signal = signal
       self.sr = 44100

   def write(self):
       self.file.setparams((1, 2, self.sr, 44100*4, 'NONE', 'noncompressed'))
       self.file.writeframes(self.signal)
       self.file.close()

mypi = float(pi)
from math import sin

def ks(delay,length,blend = 0,filler=None,stretch=0):
    if filler == None:
        filler = [randint(-16383,16383) for q in range(delay+1)]
    outsig = filler[:]
    index = len(filler)
    while len(outsig) < length:
        s = random()
        if s > stretch:
            b = random()
            if b < 1-blend:
                newvalue = (outsig[index-delay]+outsig[index-delay-1])*.5
            else:
                newvalue = -(outsig[index-delay]+outsig[index-delay-1])*.5
        else:
            newvalue = outsig[index-delay]
        outsig.append(newvalue)
        index += 1
    return [int(round(x)) for x in outsig]

@interact
def sinsound(delay = slider([int(2^i) for i in range(2,10)], default=100, label="initial delay"), blend=slider(srange(0,1,.01,include_endpoint=True),default=0,label="blend factor"), stretch=slider(srange(0,1,.01,include_endpoint=True),default=0,label="stretch factor")):
    s2f = ks(delay,int(44100*(1/2)),blend=blend,stretch=stretch)
    for i in range(12):
        s2f = s2f + ks(int(2^((12+i)/12.0)*delay),int(44100*(1/2)),blend=blend, stretch=stretch)
    html("Karplus-Strong algorithm with blending and delay stretching")
    html("<br>K. Karplus and A. Strong, <em>Digital synthesis of plucked string and drum timbres</em>, \nComputer Music Journal 7 (2) (1983), 43–55.<br>")
    html("Initial waveform:")
    show(list_plot(s2f[0:2000],plotjoined=True), figsize = [7,3.5])
    html("Waveform after stabilization:")
    show(list_plot(s2f[20000:22000],plotjoined=True), figsize = [7,3.5])
    s2str = ''.join(wave.struct.pack('h',x) for x in s2f)
    lab=""
    f = SoundFile(s2str,lab=lab)
    f.write()
    html('<embed src="https:./test'+ lab +'.wav" width="200" height="100"></embed>')
}}}

{{attachment:KarplusStrong.png}}
Line 62: Line 118:
    XY = X.intersection(Y)
    XZ = X.intersection(Z)
    YZ = Y.intersection(Z)
    XYZ = XY.intersection(Z)
    XY = X & Y
    XZ = X & Z
    YZ = Y & Z
    XYZ = XY & Z
Line 92: Line 148:
        Z = set(S[i]).intersection(S[(i+1)%3]).difference(set(XYZ))         Z = (set(S[i]) & S[(i+1)%3]) - set(XYZ)
Line 149: Line 205:
== A Random Walk ==

by William Stein

{{{
html('<h1>A Random Walk</h1>')
vv = []; nn = 0
@interact
def foo(pts = checkbox(True, "Show points"),
        refresh = checkbox(False, "New random walk every time"),
        steps = (50,(10..500))):
    # We cache the walk in the global variable vv, so that
    # checking or unchecking the points checkbox doesn't change
    # the random walk.
    html("<h2>%s steps</h2>"%steps)
    global vv
    if refresh or len(vv) == 0:
        s = 0; v = [(0,0)]
        for i in range(steps):
             s += random() - 0.5
             v.append((i, s))
        vv = v
    elif len(vv) != steps:
        # Add or subtract some points
        s = vv[-1][1]; j = len(vv)
        for i in range(steps - len(vv)):
            s += random() - 0.5
            vv.append((i+j,s))
        v = vv[:steps]
    else:
        v = vv
    L = line(v, rgbcolor='#4a8de2')
    if pts: L += points(v, pointsize=10, rgbcolor='red')
    show(L, xmin=0, figsize=[8,3])
}}}
{{attachment:randomwalk.png}}

== 3D Random Walk ==
{{{
@interact
def rwalk3d(n=(50,1000), frame=True):
    pnt = [0,0,0]
    v = [copy(pnt)]
    for i in range(n):
        pnt[0] += random()-0.5
        pnt[1] += random()-0.5
        pnt[2] += random()-0.5
        v.append(copy(pnt))
    show(line3d(v,color='black'),aspect_ratio=[1,1,1],frame=frame)
}}}
{{attachment:randomwalk3d.png}}
Line 228: Line 233:
        edge_lines = edge_lines + line([verts[an_edge[0]], verts[an_edge[1][0]]])
        edge_lines = edge_lines + line([verts[an_edge[0]], verts[an_edge[1][1]]])
        edge_lines += line([verts[an_edge[0]], verts[an_edge[1][0]]])
        edge_lines += line([verts[an_edge[0]], verts[an_edge[1][1]]])
Line 235: Line 240:
        triangle_sum = triangle_sum + polygon(temp_list, alpha = .5, rgbcolor = (1,0,0))         triangle_sum += polygon(temp_list, alpha = .5, rgbcolor = (1,0,0))
Line 241: Line 246:
        kite_sum = kite_sum + polygon(temp_list, alpha = .3,rgbcolor = (0,0,1))         kite_sum += polygon(temp_list, alpha = .3,rgbcolor = (0,0,1))
Line 243: Line 248:
    labels = labels + text('=', (-.2,.5), rgbcolor = (0,0,0))     labels += text('=', (-.2,.5), rgbcolor = (0,0,0))
Line 247: Line 252:

== Cellular Automata ==
by Pablo Angulo, Eviatar Bach

{{{
from numpy import zeros

def cellular(rule, N):
    '''Yields a matrix showing the evolution of a Wolfram's cellular automaton
    
    rule: determines how a cell's value is updated, depending on its neighbors
    N: number of iterations
    '''
    M=zeros( (N,2*N+1), dtype=int)
    M[0,N]=1
    
    for j in range(1,N):
        for k in range(0,2*N):
            l = 4*M[j-1,k-1] + 2*M[j-1,k] + M[j-1,k+1]
            M[j,k]=rule[ l ]
    return M[:,:-1]
}}}
{{{
def num2rule(number):
    if not 0 <= number <= 255:
        raise Exception('Invalid rule number')
    binary_digits = number.digits(base=2)
    return binary_digits + [0]*(8-len(binary_digits))

@interact
def _( N=input_box(label='Number of iterations',default=100),
       rule_number=input_box(label='Rule number',default=110),
       size = slider(1, 11, step_size=1, default=6 ) ):
    rule = num2rule(rule_number)
    M = cellular(rule, N)
    plot_M = matrix_plot(M, cmap='binary')
    plot_M.show( figsize=[size,size])
}}}
{{attachment:cellular.png}}

Sage Interactions - Miscellaneous

goto interact main page

Hearing a trigonometric identity

by Marshall Hampton. When the two frequencies are well seperated, we hear the right hand side of the identity. When they start getting close, we hear the higher-pitched factor in the left-hand side modulated by the lower-pitched envelope.

import wave

class SoundFile:
   def  __init__(self, signal,lab=''):
       self.file = wave.open('./test' + lab + '.wav', 'wb')
       self.signal = signal
       self.sr = 44100

   def write(self):
       self.file.setparams((1, 2, self.sr, 44100*4, 'NONE', 'noncompressed'))
       self.file.writeframes(self.signal)
       self.file.close()

mypi = float(pi)
from math import sin

@interact
def sinsound(freq_ratio =  slider(0,1,1/144,1/12)):
    hz1 = 440.0
    hz2 = float(440.0*2^freq_ratio)
    html('$\cos(\omega t) - \cos(\omega_0 t) = 2 \sin(\\frac{\omega + \omega_0}{2}t) \sin(\\frac{\omega - \omega_0}{2}t)$')
    s2 = [sin(hz1*x*mypi*2)+sin(hz2*x*mypi*2) for x in srange(0,4,1/44100.0)]
    s2m = max(s2)
    s2f = [16384*x/s2m for x in s2]
    s2str = ''.join(wave.struct.pack('h',x) for x in s2f)
    lab="%1.2f"%float(freq_ratio)
    f = SoundFile(s2str,lab=lab)
    f.write()
    pnum = 1500+int(500/freq_ratio)
    show(list_plot(s2[0:pnum],plotjoined=True))
    html('<embed src="https:./test'+ lab +'.wav" width="200" height="100"></embed>')
    html('Frequencies: '+ '$\omega_0 = ' + str(hz1) + ' $, $\omega = '+latex(hz2) + '$')

sinsound.png

Karplus-Strong algorithm for plucked and percussive sound generation

by Marshall Hampton

import wave

class SoundFile:
   def  __init__(self, signal,lab=''):
       self.file = wave.open('./test' + lab + '.wav', 'wb')
       self.signal = signal
       self.sr = 44100

   def write(self):
       self.file.setparams((1, 2, self.sr, 44100*4, 'NONE', 'noncompressed'))
       self.file.writeframes(self.signal)
       self.file.close()

mypi = float(pi)
from math import sin

def ks(delay,length,blend = 0,filler=None,stretch=0):
    if filler == None:
        filler = [randint(-16383,16383) for q in range(delay+1)]
    outsig = filler[:]
    index = len(filler)
    while len(outsig) < length:
        s = random()
        if s > stretch:
            b = random()
            if b < 1-blend:
                newvalue = (outsig[index-delay]+outsig[index-delay-1])*.5
            else:
                newvalue = -(outsig[index-delay]+outsig[index-delay-1])*.5
        else:
            newvalue = outsig[index-delay]
        outsig.append(newvalue)
        index += 1
    return [int(round(x)) for x in outsig]

@interact
def sinsound(delay = slider([int(2^i) for i in range(2,10)], default=100, label="initial delay"), blend=slider(srange(0,1,.01,include_endpoint=True),default=0,label="blend factor"), stretch=slider(srange(0,1,.01,include_endpoint=True),default=0,label="stretch factor")):
    s2f = ks(delay,int(44100*(1/2)),blend=blend,stretch=stretch)
    for i in range(12):
        s2f = s2f + ks(int(2^((12+i)/12.0)*delay),int(44100*(1/2)),blend=blend, stretch=stretch)
    html("Karplus-Strong algorithm with blending and delay stretching")
    html("<br>K. Karplus and A. Strong, <em>Digital synthesis of plucked string and drum timbres</em>, \nComputer Music Journal 7 (2) (1983), 43–55.<br>")
    html("Initial waveform:")
    show(list_plot(s2f[0:2000],plotjoined=True), figsize = [7,3.5])
    html("Waveform after stabilization:")
    show(list_plot(s2f[20000:22000],plotjoined=True), figsize = [7,3.5])
    s2str = ''.join(wave.struct.pack('h',x) for x in s2f)
    lab=""
    f = SoundFile(s2str,lab=lab)
    f.write()
    html('<embed src="https:./test'+ lab +'.wav" width="200" height="100"></embed>')

KarplusStrong.png

An Interactive Venn Diagram

def f(s, braces=True): 
    t = ', '.join(sorted(list(s)))
    if braces: return '{' + t + '}'
    return t
def g(s): return set(str(s).replace(',',' ').split())

@interact
def _(X='1,2,3,a', Y='2,a,3,4,apple', Z='a,b,10,apple'):
    S = [g(X), g(Y), g(Z)]
    X,Y,Z = S
    XY = X & Y
    XZ = X & Z
    YZ = Y & Z
    XYZ = XY & Z
    html('<center>')
    html("$X \cap Y$ = %s"%f(XY))
    html("$X \cap Z$ = %s"%f(XZ))
    html("$Y \cap Z$ = %s"%f(YZ))
    html("$X \cap Y \cap Z$ = %s"%f(XYZ))
    html('</center>')
    centers = [(cos(n*2*pi/3), sin(n*2*pi/3)) for n in [0,1,2]]
    scale = 1.7
    clr = ['yellow', 'blue', 'green']
    G = Graphics()
    for i in range(len(S)):
        G += circle(centers[i], scale, rgbcolor=clr[i], 
             fill=True, alpha=0.3)
    for i in range(len(S)):
        G += circle(centers[i], scale, rgbcolor='black')

    # Plot what is in one but neither other
    for i in range(len(S)):
        Z = set(S[i])
        for j in range(1,len(S)):
            Z = Z.difference(S[(i+j)%3])
        G += text(f(Z,braces=False), (1.5*centers[i][0],1.7*centers[i][1]), rgbcolor='black')


    # Plot pairs of intersections
    for i in range(len(S)):
        Z = (set(S[i]) & S[(i+1)%3]) - set(XYZ)
        C = (1.3*cos(i*2*pi/3 + pi/3), 1.3*sin(i*2*pi/3 + pi/3))
        G += text(f(Z,braces=False), C, rgbcolor='black')

    # Plot intersection of all three
    G += text(f(XYZ,braces=False), (0,0), rgbcolor='black')

    # Show it
    G.show(aspect_ratio=1, axes=False)

veng.png

Unreadable code

by Igor Tolkov

@interact
def _(h=(20,(1,36,1))):
    print (lambda f:f(0,f))(
        lambda n,f:'%s\n%s'%(
            ('*'*(2*n+1)).join([' '*(h-n-1)]*2),
            ((n<h-1 and f(n+1,f)) or '')
        )
    )

unreadable.png

Profile a snippet of code

html('<h2>Profile the given input</h2>')
import cProfile; import profile
@interact
def _(cmd = ("Statement", '2 + 2'), 
      do_preparse=("Preparse?", True), cprof =("cProfile?", False)):
    if do_preparse: cmd = preparse(cmd)
    print "<html>"  # trick to avoid word wrap
    if cprof:
        cProfile.run(cmd)
    else:
        profile.run(cmd)
    print "</html>"

profile.png

Evaluate a bit of code in a given system

by William Stein (there is no way yet to make the text box big):

@interact
def _(system=selector([('sage0', 'Sage'), ('gp', 'PARI'), ('magma', 'Magma')]), code='2+2'):
    print globals()[system].eval(code)

evalsys.png

Minkowski Sum

by Marshall Hampton

def minkdemo(list1,list2):
    '''
    Returns the Minkowski sum of two lists.
    '''
    output = []
    for stuff1 in list1:
        for stuff2 in list2:
            temp = [stuff1[i] + stuff2[i] for i in range(len(stuff1))]
            output.append(temp)
    return output
@interact
def minksumvis(x1tri = slider(-1,1,1/10,0, label = 'Triangle point x coord.'), yb = slider(1,4,1/10,2, label = 'Blue point y coord.')):
    t_list = [[1,0],[x1tri,1],[0,0]]
    kite_list = [[3, 0], [1, 0], [0, 1], [1, yb]]
    triangle = polygon([[q[0]-6,q[1]] for q in t_list], alpha = .5, rgbcolor = (1,0,0))
    t_vert = point([x1tri-6,1], rgbcolor = (1,0,0))
    b_vert = point([kite_list[3][0]-4,yb], rgbcolor = (0,0,1))
    kite = polygon([[q[0]-4,q[1]] for q in kite_list], alpha = .5,rgbcolor = (0,0,1))
    p12 = minkdemo(t_list, kite_list)
    p12 = [[q[0],q[1]] for q in p12]
    p12poly = Polyhedron(p12)
    edge_lines = Graphics()
    verts = p12poly.vertices()
    for an_edge in p12poly.vertex_adjacencies():
        edge_lines += line([verts[an_edge[0]], verts[an_edge[1][0]]])
        edge_lines += line([verts[an_edge[0]], verts[an_edge[1][1]]])
    triangle_sum = Graphics()
    for vert in kite_list:
        temp_list = []
        for q in t_list:
            temp_list.append([q[i] + vert[i] for i in range(len(t_list[0]))])
        triangle_sum += polygon(temp_list, alpha = .5, rgbcolor = (1,0,0))
    kite_sum = Graphics()
    for vert in t_list:
        temp_list = []
        for q in kite_list:
            temp_list.append([q[i] + vert[i] for i in range(len(t_list[0]))])
        kite_sum += polygon(temp_list, alpha = .3,rgbcolor = (0,0,1))
    labels = text('+', (-4.3,.5), rgbcolor = (0,0,0))
    labels += text('=', (-.2,.5), rgbcolor = (0,0,0))
    show(labels + t_vert + b_vert+ triangle + kite + triangle_sum + kite_sum + edge_lines, axes=False, figsize = [11.0*.7, 4*.7], xmin = -6, ymin = 0, ymax = 4)

minksum.png

Cellular Automata

by Pablo Angulo, Eviatar Bach

from numpy import zeros

def cellular(rule, N):
    '''Yields a matrix showing the evolution of a Wolfram's cellular automaton
    
    rule:     determines how a cell's value is updated, depending on its neighbors
    N:        number of iterations
    '''
    M=zeros( (N,2*N+1), dtype=int)
    M[0,N]=1  
    
    for j in range(1,N):
        for k in range(0,2*N):
            l = 4*M[j-1,k-1] + 2*M[j-1,k] + M[j-1,k+1]
            M[j,k]=rule[ l ]
    return M[:,:-1]

def num2rule(number):
    if not 0 <= number <= 255:
        raise Exception('Invalid rule number')
    binary_digits = number.digits(base=2)
    return binary_digits + [0]*(8-len(binary_digits))

@interact
def _( N=input_box(label='Number of iterations',default=100),
       rule_number=input_box(label='Rule number',default=110),
       size = slider(1, 11, step_size=1, default=6 ) ):
    rule = num2rule(rule_number)
    M = cellular(rule, N)
    plot_M = matrix_plot(M, cmap='binary')
    plot_M.show( figsize=[size,size])

cellular.png

interact/misc (last edited 2020-06-05 20:32:41 by mathzeta2)