Differences between revisions 33 and 34
Revision 33 as of 2019-10-09 21:30:48
Size: 14961
Editor: pang
Comment: ||width=600 for attachment:HSEL
Revision 34 as of 2019-10-09 21:35:43
Size: 19647
Editor: pang
Comment: Solution of a non homogeneous system of linear equations
Deletions are marked like this. Additions are marked like this.
Line 353: Line 353:


== Solution of a non homogeneous system of linear equations ==
by Pablo Angulo

Coefficients are introduced as a matrix in a single text box, and independent terms as a vector in a separate text box.
The number of equations and unknowns are arbitrary.

{{{#!sagecell
from sage.misc.html import HtmlFragment

def SLE_as_latex(A, b, variables):
    nvars = A.ncols()
    pretty_print(HtmlFragment(
    r'$$\left\{\begin{array}{%s}'%('r'*(nvars+1))+
    r'\\'.join('%s=&%s'%(
        (' & '.join((r'%s%s\cdot %s'%('+' if c>0 else '',c,v) if c else '') for c,v in zip(row, variables))
        if not row.is_zero() else '&'*(nvars-1)+'0',y)
               ) for row,y in zip(A,b))+
    r'\end{array}\right.$$'))

def extended_matrix_as_latex(M):
    A = M[:,:-1]
    b = M.column(-1)
    nvars = A.ncols()
    pretty_print(HtmlFragment(
    r'$$\left(\begin{array}{%s}'%('r'*nvars+ '|r')+
    r'\\'.join('%s&%s'%(
        ' & '.join('%s'%c for c in row)
        ,y) for row,y in zip(A,b))+
    r'\end{array}\right)$$'))

@interact
def SEL(A_text='[(0,0,-1,2),(-1,0,2,4), (0,0,1,-2)]',
        b_text='[2,1,-2]',
        auto_update=False
    ):
    A = matrix(eval(A_text))
    b = vector(eval(b_text))
    M = A.augment(b)
    neqs = len(b)
    nvars = A.ncols()
    var_names = ','.join('x%d'%j for j in [1..nvars])
    variables = var(var_names)
    pretty_print(HtmlFragment('Variables: %s'% var_names))
    for row,y in zip(A,b):
        pretty_print(HtmlFragment(sum(c*v for c,v in zip(row, variables))==y))

    SLE_as_latex(A, b, variables)
    pretty_print(HtmlFragment( 'We construct the augmented matrix'))
    extended_matrix_as_latex(M)

    pivot = {}
    ibound_variables = []
    for m,row in enumerate(A):
        for k in range(m,nvars):
            lista = [(abs(M[j,k]),j) for j in range(m,neqs)]
            maxi, c = max(lista)
            if maxi > 0:
                ibound_variables.append(k)
                if M[m,k]==0:
                    M[c,:],M[m,:]=M[m,:],M[c,:]
                    pretty_print( HtmlFragment('We permute rows %d and %d'%(m+1,c+1)))
                    extended_matrix_as_latex(M)
                pivot[m] = k
                break

        a=M[m,k]
        for n in range(m+1,neqs):
            if M[n,k]!=0:
                pretty_print( HtmlFragment("We add %s times row %d to row %d"%(-M[n,k]/a, m+1, n+1)))
                M=M.with_added_multiple_of_row(n,m,-M[n,k]/a)
                extended_matrix_as_latex(M)

    A = M[:,:-1]
    b = M.column(-1)
    SLE_as_latex(A, b, variables)
    SEL_type = 'compatible'
    null_rows = None
    for k,(row,y) in enumerate(zip(A,b)):
        if row.is_zero():
            if y==0 and null_rows is None:
                null_rows = k
                break
            elif y!=0:
                SEL_type = 'incompatible'
    if SEL_type == 'incompatible':
        pretty_print( HtmlFragment('The system has no solutions'))
        return
    if null_rows:
        pretty_print(HtmlFragment('We remove trivial 0=0 equations'))
        A = A[:null_rows,:]
        b = b[:null_rows]
        SLE_as_latex(A, b, variables)

    ifree_variables = [k for k in range(nvars) if k not in ibound_variables]
    bound_variables = [variables[k] for k in ibound_variables]
    free_variables = [variables[k] for k in ifree_variables]
    pretty_print( HtmlFragment('Free variables: %s'% free_variables))
    pretty_print( HtmlFragment('Bound variables: %s'% bound_variables))
    reduced_eqs = [
        sum(c*v for c,v in zip(row, variables))==y
        for row,y in zip(A,b)
    ]
    xvector = vector(variables)
    if len(bound_variables)==1:
        soldict = solve(reduced_eqs, bound_variables[0], solution_dict=True)[0]
    else:
        soldict = solve(reduced_eqs, bound_variables, solution_dict=True)[0]
    pretty_print( HtmlFragment('Solution in parametric form'))
    parametric_sol = matrix(
        xvector.apply_map(lambda s:s.subs(soldict))
    ).transpose()
    show(parametric_sol)
    pretty_print( HtmlFragment('Solution in vector form'))
    pretty_print( HtmlFragment(
        r'$$ %s + \left\langle %s\right\rangle$$'%(
            latex(parametric_sol.subs(dict(zip(free_variables, [0]*len(free_variables))))),
            ','.join(latex(
            parametric_sol.apply_map(lambda s:s.diff(v))
        ) for v in free_variables) if free_variables else latex(matrix([0]*nvars).transpose()))
    ))
    pretty_print( HtmlFragment('Dimension is %d'%len(free_variables)))
}}}
{{attachment:NHSEL_1.png||width=600}}
{{attachment:NHSEL_2.png||width=600}}

Sage Interactions - Linear Algebra

goto interact main page

Numerical instability of the classical Gram-Schmidt algorithm

by Marshall Hampton

GramSchmidt.png

Equality of det(A) and det(A.tranpose())

by Marshall Hampton

Det_transpose_new.png

Linear transformations

by Jason Grout

A square matrix defines a linear transformation which rotates and/or scales vectors. In the interact command below, the red vector represents the original vector (v) and the blue vector represents the image w under the linear transformation. You can change the angle and length of v by changing theta and r.

Linear-Transformations.png

Gerschgorin Circle Theorem

by Marshall Hampton. This animated version requires convert (imagemagick) to be installed, but it can easily be modified to a static version. The animation illustrates the idea behind the stronger version of Gerschgorin's theorem, which says that if the disks around the eigenvalues are disjoint then there is one eigenvalue per disk. The proof is by continuity of the eigenvalues under a homotopy to a diagonal matrix.

Gerschanimate.png

Gersch.gif

Singular value decomposition

by Marshall Hampton

svd1.png

Discrete Fourier Transform

by Marshall Hampton

dfft1.png

The Gauss-Jordan method for inverting a matrix

by Hristo Inouzhe

gauss-jordan.png

...(goes all the way to invert the matrix)

Solution of an homogeneous system of linear equations

by Pablo Angulo

Coefficients are introduced as a matrix in a single text box. The number of equations and unknowns are arbitrary.

HSEL_1.png HSEL_2.png

Solution of a non homogeneous system of linear equations

by Pablo Angulo

Coefficients are introduced as a matrix in a single text box, and independent terms as a vector in a separate text box. The number of equations and unknowns are arbitrary.

NHSEL_1.png NHSEL_2.png

interact/linear_algebra (last edited 2020-11-27 12:10:23 by pang)