Processing Math: Done
No jsMath TeX fonts found -- using unicode fonts instead.
This may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 2 and 3
Revision 2 as of 2008-10-30 00:51:19
Size: 6988
Comment:
Revision 3 as of 2008-10-30 01:00:09
Size: 7011
Comment:
Deletions are marked like this. Additions are marked like this.
Line 3: Line 3:

[[TableOfContents]]

Sage Interactions - Linear Algebra

goto [:interact:interact main page]

TableOfContents

Numerical instability of the classical Gram-Schmidt algorithm

by Marshall Hampton (tested by William Stein, who thinks this is really nice!)

def GS_classic(a_list):
    '''
    Given a list of vectors or a matrix, returns the QR factorization using the classical (and numerically unstable) Gram-Schmidt algorithm.    
    '''
    if type(a_list) != list:
        cols = a_list.cols()
        a_list = [x for x in cols]
    indices = range(len(a_list))
    q = []
    r = [[0 for i in indices] for j in indices]
    v = [a_list[i].copy() for i in indices]
    for i in indices:
        for j in range(0,i):
            r[j][i] = q[j].inner_product(a_list[i])
            v[i] = v[i] - r[j][i]*q[j]
        r[i][i] = (v[i]*v[i])^(1/2)
        q.append(v[i]/r[i][i])
    q = matrix([q[i] for i in indices]).transpose()
    return q, matrix(r)
def GS_modern(a_list):
    '''
    Given a list of vectors or a matrix, returns the QR factorization using the 'modern' Gram-Schmidt algorithm.    
    '''
    if type(a_list) != list:
        cols = a_list.cols()
        a_list = [x for x in cols]
    indices = range(len(a_list))
    q = []
    r = [[0 for i in indices] for j in indices]
    v = [a_list[i].copy() for i in indices]
    for i in indices:
        r[i][i] = v[i].norm(2)
        q.append(v[i]/r[i][i])
        for j in range(i+1, len(indices)):
            r[i][j] = q[i].inner_product(v[j])
            v[j] = v[j] - r[i][j]*q[i]
    q = matrix([q[i] for i in indices]).transpose()
    return q, matrix(r)
html('<h2>Numerical instability of the classical Gram-Schmidt algorithm</h2>')
@interact
def gstest(precision = slider(range(3,53), default = 10), a1 = input_box([1,1/1000,1/1000]), a2 = input_box([1,1/1000,0]), a3 = input_box([1,0,1/1000])):
    myR = RealField(precision)
    displayR = RealField(5)
    html('precision in bits: ' + str(precision) + '<br>')
    A = matrix([a1,a2,a3])
    A = [vector(myR,x) for x in A]
    qn, rn = GS_classic(A)
    qb, rb = GS_modern(A)
    html('Classical Gram-Schmidt:')
    show(matrix(displayR,qn))
    html('Stable Gram-Schmidt:')
    show(matrix(displayR,qb))

attachment:GramSchmidt.png

Linear transformations

by Jason Grout

A square matrix defines a linear transformation which rotates and/or scales vectors. In the interact command below, the red vector represents the original vector (v) and the blue vector represents the image w under the linear transformation. You can change the angle and length of v by changing theta and r.

@interact
def linear_transformation(theta=slider(0, 2*pi, .1), r=slider(0.1, 2, .1, default=1)):
    A=matrix([[1,-1],[-1,1/2]])
    v=vector([r*cos(theta), r*sin(theta)])
    w = A*v
    circles = sum([circle((0,0), radius=i, rgbcolor=(0,0,0)) for i in [1..2]])
    print jsmath("v = %s,\; %s v=%s"%(v.n(4),latex(A),w.n(4)))
    show(v.plot(rgbcolor=(1,0,0))+w.plot(rgbcolor=(0,0,1))+circles,aspect_ratio=1)

attachment:Linear-Transformations.png

Gerschgorin Circle Theorem

by Marshall Hampton

from scipy import linalg
html('<h2>The Gerschgorin circle theorem</h2>')
@interact
def Gerschgorin(A = input_grid(4, 4, default=[[10,1,1,0],[-1,9,0,.1],[1,0,2,.3],[-.5
,0,-.3,1]], label='A = ', to_value=lambda x:x, width=4)):
    print jsmath('A = ' + latex(matrix(RealField(10),A)))
    eigs = [CDF(x) for x in linalg.eigvals(matrix(A).numpy())]
    eigpoints = points([(real(q),imag(q)) for q in eigs],pointsize = 10, rgbcolor = (0,0,0))
    centers = [(real(q),imag(q)) for q in [A[i][i] for i in range(4)]]
    radii_row = [sum([abs(A[i][j]) for j in range(i)+range(i+1,4)]) for i in range(4)]
    radii_col = [sum([abs(A[j][i]) for j in range(i)+range(i+1,4)]) for i in range(4)]
    x_min = min([centers[i][0]-radii_row[i] for i in range(4)]+[centers[i][0]-radii_col[i] for i in range(4)])
    x_max = max([centers[i][0]+radii_row[i] for i in range(4)]+[centers[i][0]+radii_col[i] for i in range(4)])
    y_min = min([centers[i][1]-radii_row[i] for i in range(4)]+[centers[i][1]-radii_col[i] for i in range(4)])
    y_max = max([centers[i][1]+radii_row[i] for i in range(4)]+[centers[i][1]+radii_col[i] for i in range(4)])
    scale = max([(x_max-x_min),(y_max-y_min)])
    scale = 7/scale
    row_circles = sum([circle(centers[i],radii_row[i],fill=True, alpha = .3) for i in range(4)])
    col_circles = sum([circle(centers[i],radii_col[i],fill=True, rgbcolor = (1,1,0), alpha = .3) for i in range(4)])
    show(eigpoints+row_circles+col_circles, figsize = [(x_max-x_min)*scale,(y_max-y_min)*scale], xmin = x_min, xmax=x_max, ymin = y_min, ymax = y_max)

attachment:gerschgorin.png

Singular value decomposition

by Marshall Hampton

import scipy.linalg as lin
var('t')
def rotell(sig,umat,t,offset=0):
    temp = matrix(umat)*matrix(2,1,[sig[0]*cos(t),sig[1]*sin(t)])
    return [offset+temp[0][0],temp[1][0]]
@interact
def svd_vis(a11=slider(-1,1,.05,1),a12=slider(-1,1,.05,1),a21=slider(-1,1,.05,0),a22=slider(-1,1,.05,1),ofs= selector(['Off','On'],label='offset image from domain')):
    rf_low = RealField(12)
    my_mat = matrix(rf_low,2,2,[a11,a12,a21,a22])
    u,s,vh = lin.svd(my_mat.numpy())
    if ofs == 'On': 
        offset = 3
        fsize = 6
        colors = [(1,0,0),(0,0,1),(1,0,0),(0,0,1)]
    else: 
        offset = 0
        fsize = 5
        colors = [(1,0,0),(0,0,1),(.7,.2,0),(0,.3,.7)]
    vvects = sum([arrow([0,0],matrix(vh).row(i),rgbcolor = colors[i]) for i in (0,1)])    
    uvects = Graphics()
    for i in (0,1):
        if s[i] != 0: uvects += arrow([offset,0],vector([offset,0])+matrix(s*u).column(i),rgbcolor = colors[i+2])
    html('<h3>Singular value decomposition: image of the unit circle and the singular vectors</h3>')
    print jsmath("A = %s  = %s %s %s"%(latex(my_mat), latex(matrix(rf_low,u.tolist())), latex(matrix(rf_low,2,2,[s[0],0,0,s[1]])), latex(matrix(rf_low,vh.tolist())))) 
    image_ell = parametric_plot(rotell(s,u,t, offset),0,2*pi)
    graph_stuff=circle((0,0),1)+image_ell+vvects+uvects
    graph_stuff.set_aspect_ratio(1)
    show(graph_stuff,frame = False,axes=False,figsize=[fsize,fsize])

attachment:svd1.png

Discrete Fourier Transform

by Marshall Hampton

import scipy.fftpack as Fourier
@interact
def discrete_fourier(f = input_box(default=sum([sin(k*x) for k in range(1,5,2)])), scale = slider(.1,20,.1,5)):
    var('x')
    pbegin = -float(pi)*scale
    pend = float(pi)*scale
    html("<h3>Function plot and its discrete Fourier transform</h3>")
    show(plot(f, pbegin, pend, plot_points = 512), figsize = [4,3])
    f_vals = [f(ind) for ind in srange(pbegin, pend,(pend-pbegin)/512.0)]
    my_fft = Fourier.fft(f_vals)
    show(list_plot([abs(x) for x in my_fft], plotjoined=True), figsize = [4,3])

attachment:dfft1.png

interact/linear_algebra (last edited 2020-11-27 12:10:23 by pang)