Size: 5314
Comment:
|
Size: 14939
Comment: attachment:HSEL_1.png
|
Deletions are marked like this. | Additions are marked like this. |
Line 2: | Line 2: |
goto [:interact:interact main page] | goto [[interact|interact main page]] <<TableOfContents>> |
Line 5: | Line 7: |
by Marshall Hampton (tested by William Stein, who thinks this is really nice!) {{{ |
by Marshall Hampton {{{#!sagecell |
Line 17: | Line 19: |
v = [a_list[i].copy() for i in indices] | v = [a_list[i][:] for i in indices] |
Line 22: | Line 24: |
r[i][i] = (v[i]*v[i])^(1/2) | r[i][i] = (v[i]*v[i])**(1/2) |
Line 36: | Line 38: |
v = [a_list[i].copy() for i in indices] | v = [a_list[i][:] for i in indices] |
Line 45: | Line 47: |
html('<h2>Numerical instability of the classical Gram-Schmidt algorithm</h2>') | pretty_print(html('<h2>Numerical instability of the classical Gram-Schmidt algorithm</h2>')) |
Line 50: | Line 52: |
html('precision in bits: ' + str(precision) + '<br>') | pretty_print(html('precision in bits: ' + str(precision) + '<br>')) |
Line 55: | Line 57: |
html('Classical Gram-Schmidt:') | pretty_print(html('Classical Gram-Schmidt:')) |
Line 57: | Line 59: |
html('Stable Gram-Schmidt:') | pretty_print(html('Stable Gram-Schmidt:')) |
Line 60: | Line 62: |
attachment:GramSchmidt.png |
{{attachment:GramSchmidt.png}} == Equality of det(A) and det(A.tranpose()) == by Marshall Hampton {{{#!sagecell srg = srange(-4,4,1/10,include_endpoint=True) @interact def dualv(a1=slider(srg,default=1),a2=slider(srg,default=2), a3=slider(srg,default=-1),a4=slider(srg,default=3)): A1 = arrow2d([0,0],[a1,a2],rgbcolor='black') A2 = arrow2d([0,0],[a3,a4],rgbcolor='black') A3 = arrow2d([0,0],[a1,a3],rgbcolor='black') A4 = arrow2d([0,0],[a2,a4],rgbcolor='black') p1 = polygon([[0,0],[a1,a2],[a1+a3,a2+a4],[a3,a4],[0,0]], alpha=.5) p2 = polygon([[0,0],[a1,a3],[a1+a2,a3+a4],[a2,a4],[0,0]],rgbcolor='red', alpha=.5) A = matrix([[a1,a2],[a3,a4]]) pretty_print(html('<h3>The determinant of a matrix is equal to the determinant of the transpose</h3>')) pretty_print(html(" show(A1+A2+A3+A4+p1+p2) }}} {{attachment:Det_transpose_new.png}} |
Line 68: | Line 88: |
{{{ @interact def linear_transformation(theta=slider(0, 2*pi, .1), r=slider(0.1, 2, .1, default=1)): A=matrix([[1,-1],[-1,1/2]]) |
{{{#!sagecell @interact def linear_transformation(A=matrix([[1,-1],[-1,1/2]]),theta=slider(0, 2*pi, .1), r=slider(0.1, 2, .1, default=1)): |
Line 74: | Line 93: |
circles = sum([circle((0,0), radius=i, rgbcolor=(0,0,0)) for i in [1..2]]) print jsmath("v = %s,\; %s v=%s"%(v.n(4),latex(A),w.n(4))) show(v.plot(rgbcolor=(1,0,0))+w.plot(rgbcolor=(0,0,1))+circles,aspect_ratio=1) }}} attachment:Linear-Transformations.png |
circles = sum([circle((0,0), radius=i, color='black') for i in [1..2]]) pretty_print(html(" show(v.plot(color='red')+w.plot(color='blue')+circles,aspect_ratio=1) }}} {{attachment:Linear-Transformations.png}} == Gerschgorin Circle Theorem == by Marshall Hampton. This animated version requires convert (imagemagick) to be installed, but it can easily be modified to a static version. The animation illustrates the idea behind the stronger version of Gerschgorin's theorem, which says that if the disks around the eigenvalues are disjoint then there is one eigenvalue per disk. The proof is by continuity of the eigenvalues under a homotopy to a diagonal matrix. {{{#!sagecell from scipy import linalg pretty_print(html('<h2>The Gerschgorin circle theorem</h2>')) @interact def Gerschgorin(Ain = input_box(default='[[10,1,1/10,0],[-1,9,0,1],[1,0,2,3/10],[-.5,0,-.3,1]]', type = str, label = 'A = '), an_size = slider(1,100,1,1.0)): A = sage_eval(Ain) size = len(A) pretty_print(html(' A = matrix(RealField(10),A) B = [[0 for i in range(size)] for j in range(size)] for i in range(size): B[i][i] = A[i][i] B = matrix(B) frames = [] centers = [(real(q),imag(q)) for q in [A[i][i] for i in range(size)]] radii_row = [sum([abs(A[i][j]) for j in range(i)+range(i+1,size)]) for i in range(size)] radii_col = [sum([abs(A[j][i]) for j in range(i)+range(i+1,size)]) for i in range(size)] x_min = min([centers[i][0]-radii_row[i] for i in range(size)]+[centers[i][0]-radii_col[i] for i in range(size)]) x_max = max([centers[i][0]+radii_row[i] for i in range(size)]+[centers[i][0]+radii_col[i] for i in range(size)]) y_min = min([centers[i][1]-radii_row[i] for i in range(size)]+[centers[i][1]-radii_col[i] for i in range(size)]) y_max = max([centers[i][1]+radii_row[i] for i in range(size)]+[centers[i][1]+radii_col[i] for i in range(size)]) if an_size > 1: t_range= srange(0,1+1/an_size,1/an_size) else: t_range = [1] for t in t_range: C = t*A + (1-t)*B eigs = [CDF(x) for x in linalg.eigvals(C.numpy())] eigpoints = points([(real(q),imag(q)) for q in eigs],pointsize = 10, rgbcolor = (0,0,0)) centers = [(real(q),imag(q)) for q in [A[i][i] for i in range(size)]] radii_row = [sum([abs(C[i][j]) for j in range(i)+range(i+1,size)]) for i in range(size)] radii_col = [sum([abs(C[j][i]) for j in range(i)+range(i+1,size)]) for i in range(size)] scale = max([(x_max-x_min),(y_max-y_min)]) scale = 7/scale row_circles = sum([circle(centers[i],radii_row[i],fill=True, alpha = .3) for i in range(size)]) col_circles = sum([circle(centers[i],radii_col[i],fill=True, rgbcolor = (1,0,0), alpha = .3) for i in range(size)]) ft = eigpoints+row_circles+col_circles frames.append(ft) show(animate(frames,figsize = [(x_max-x_min)*scale,(y_max-y_min)*scale], xmin = x_min, xmax=x_max, ymin = y_min, ymax = y_max)) }}} {{attachment:Gerschanimate.png}} {{attachment:Gersch.gif}} |
Line 82: | Line 150: |
{{{ | {{{#!sagecell |
Line 89: | Line 157: |
def svd_vis(a11=slider(-1,1,.05,1),a12=slider(-1,1,.05,1),a21=slider(-1,1,.05,0),a22=slider(-1,1,.05,1),ofs= selector(['Off','On'],label='offset image from domain')): | def svd_vis(a11=slider(-1,1,.05,1),a12=slider(-1,1,.05,1),a21=slider(-1,1,.05,0),a22=slider(-1,1,.05,1),ofs= ('offset image from domain',False)): |
Line 93: | Line 161: |
if ofs == 'On': | if ofs: |
Line 105: | Line 173: |
html('<h3>Singular value decomposition: image of the unit circle and the singular vectors</h3>') print jsmath("A = %s = %s %s %s"%(latex(my_mat), latex(matrix(rf_low,u.tolist())), latex(matrix(rf_low,2,2,[s[0],0,0,s[1]])), latex(matrix(rf_low,vh.tolist())))) image_ell = parametric_plot(rotell(s,u,t, offset),0,2*pi) |
pretty_print(html('<h3>Singular value decomposition: image of the unit circle and the singular vectors</h3>')) pretty_print(html("$A = %s = %s %s %s$"%(latex(my_mat), latex(matrix(rf_low,u.tolist())), latex(matrix(rf_low,2,2,[s[0],0,0,s[1]])), latex(matrix(rf_low,vh.tolist()))))) image_ell = parametric_plot(rotell(s,u,t, offset),(0,2*pi)) |
Line 110: | Line 178: |
show(graph_stuff,frame = False,axes=False,figsize=[fsize,fsize]) }}} attachment:svd1.png |
show(graph_stuff,frame = False,axes=False,figsize=[fsize,fsize])}}} {{attachment:svd1.png}} |
Line 116: | Line 183: |
{{{ | {{{#!sagecell |
Line 120: | Line 187: |
var('x') | |
Line 123: | Line 189: |
html("<h3>Function plot and its discrete Fourier transform</h3>") show(plot(f, pbegin, pend, plot_points = 512), figsize = [4,3]) f_vals = [f(ind) for ind in srange(pbegin, pend,(pend-pbegin)/512.0)] |
pretty_print(html("<h3>Function plot and its discrete Fourier transform</h3>")) show(plot(f, (x,pbegin, pend), plot_points = 512), figsize = [4,3]) f_vals = [f(x=ind) for ind in srange(pbegin, pend,(pend-pbegin)/512.0)] |
Line 127: | Line 193: |
show(list_plot([abs(x) for x in my_fft], plotjoined=True), figsize = [4,3]) }}} attachment:dfft1.png |
show(list_plot([abs(i) for i in my_fft], plotjoined=True), figsize = [4,3]) }}} {{attachment:dfft1.png}} == The Gauss-Jordan method for inverting a matrix == by Hristo Inouzhe {{{#!sagecell #Choose the size D of the square matrix: D = 3 example = [[1 if k==j else 0 for k in range(D)] for j in range(D)] example[0][-1] = 2 example[-1][0] = 3 @interact def _(M=input_grid(D,D, default = example, label='Matrix to invert', to_value=matrix), tt = text_control('Enter the bits of precision used' ' (only if you entered floating point numbers)'), precision = slider(5,100,5,20), auto_update=False): if det(M)==0: print 'Failure: Matrix is not invertible' return if M.base_ring() == RR: M = M.apply_map(RealField(precision)) N=M M=M.augment(identity_matrix(D)) print 'We construct the augmented matrix' show(M) for m in range(0,D-1): if M[m,m] == 0: lista = [(abs(M[j,m]),j) for j in range(m+1,D)] maxi, c = max(lista) M[c,:],M[m,:]=M[m,:],M[c,:] print 'We permute rows %d and %d'%(m+1,c+1) show(M) for n in range(m+1,D): a=M[m,m] if M[n,m]!=0: print "We add %s times row %d to row %d"%(-M[n,m]/a, m+1, n+1) M=M.with_added_multiple_of_row(n,m,-M[n,m]/a) show(M) for m in range(D-1,-1,-1): for n in range(m-1,-1,-1): a=M[m,m] if M[n,m]!=0: print "We add %s times row %d to the row %d"%(-M[n,m]/a, m+1, n+1) M=M.with_added_multiple_of_row(n,m,-M[n,m]/a) show(M) for m in range(0,D): if M[m,m]!=1: print 'We divide row %d by %s'%(m+1,M[m,m]) M = M.with_row_set_to_multiple_of_row(m,m,1/M[m,m]) show(M) M=M.submatrix(0,D,D) print 'We keep the right submatrix, which contains the inverse' html(' print 'We check it actually is the inverse' html(' }}} {{attachment:gauss-jordan.png}} ...(goes all the way to invert the matrix) == Solution of an homogeneous system of linear equations == by Pablo Angulo Coefficients are introduced as a matrix in a single text box. The number of equations and unknowns are arbitrary. {{{#!sagecell from sage.misc.html import HtmlFragment def HSLE_as_latex(A, variables): nvars = A.ncols() pretty_print(HtmlFragment( r' @interact def SEL(A='[(0,1,-1,2),(-1,0,2,4), (0,-1,1,-2)]', auto_update=False ): M = A = matrix(eval(A)) neqs = M.nrows() nvars = M.ncols() var_names = ','.join('x%d'%j for j in [1..nvars]) variables = var(var_names) HSLE_as_latex(M, variables) pretty_print(HtmlFragment( 'SEL in matrix form')) show(M) pivot = {} ibound_variables = [] for m,row in enumerate(M): for k in range(m,nvars): lista = [(abs(M[j,k]),j) for j in range(m,neqs)] maxi, c = max(lista) if maxi > 0: ibound_variables.append(k) if M[m,k]==0: M[c,:],M[m,:]=M[m,:],M[c,:] pretty_print( HtmlFragment('We permute rows %d and %d'%(m+1,c+1))) show(M) pivot[m] = k break a=M[m,k] for n in range(m+1,neqs): if M[n,k]!=0: pretty_print( HtmlFragment("We add %s times row %d to row %d"%(-M[n,k]/a, m+1, n+1))) M=M.with_added_multiple_of_row(n,m,-M[n,k]/a) show(M) pretty_print( HtmlFragment('Equivalent system of equations')) HSLE_as_latex(M, variables) SEL_type = 'compatible' null_rows = None for k,row in enumerate(M): if row.is_zero(): pretty_print( HtmlFragment('We remove trivial 0=0 equations')) M = M[:k,:] HSLE_as_latex(M, variables) ifree_variables = [k for k in range(nvars) if k not in ibound_variables] bound_variables = [variables[k] for k in ibound_variables] free_variables = [variables[k] for k in ifree_variables] pretty_print( HtmlFragment('Free variables: %s'% free_variables)) pretty_print( HtmlFragment('Bound variables: %s'% bound_variables)) reduced_eqs = [ sum(c*v for c,v in zip(row, variables))==0 for row in M ] xvector = vector(variables) if len(bound_variables)==1: soldict = solve(reduced_eqs, bound_variables[0], solution_dict=True)[0] else: soldict = solve(reduced_eqs, bound_variables, solution_dict=True)[0] pretty_print( HtmlFragment('Solution in parametric form')) parametric_sol = matrix( xvector.apply_map(lambda s:s.subs(soldict)) ).transpose() show(parametric_sol) pretty_print( HtmlFragment('Generators')) pretty_print( HtmlFragment( r' parametric_sol.subs(dict((variables[k],1 if j==k else 0) for k in ifree_variables)) ) for j in ifree_variables) )) pretty_print( HtmlFragment('Dimension is %d'%len(free_variables))) }}} {{attachment:HSEL_1.png}} {{attachment:HSEL_2.png}} |
Sage Interactions - Linear Algebra
goto interact main page
Contents
-
Sage Interactions - Linear Algebra
- Numerical instability of the classical Gram-Schmidt algorithm
- Equality of det(A) and det(A.tranpose())
- Linear transformations
- Gerschgorin Circle Theorem
- Singular value decomposition
- Discrete Fourier Transform
- The Gauss-Jordan method for inverting a matrix
- Solution of an homogeneous system of linear equations
Numerical instability of the classical Gram-Schmidt algorithm
by Marshall Hampton
xxxxxxxxxx
def GS_classic(a_list):
'''
Given a list of vectors or a matrix, returns the QR factorization using the classical (and numerically unstable) Gram-Schmidt algorithm.
'''
if type(a_list) != list:
cols = a_list.cols()
a_list = [x for x in cols]
indices = range(len(a_list))
q = []
r = [[0 for i in indices] for j in indices]
v = [a_list[i][:] for i in indices]
for i in indices:
for j in range(0,i):
r[j][i] = q[j].inner_product(a_list[i])
v[i] = v[i] - r[j][i]*q[j]
r[i][i] = (v[i]*v[i])**(1/2)
q.append(v[i]/r[i][i])
q = matrix([q[i] for i in indices]).transpose()
return q, matrix(r)
def GS_modern(a_list):
'''
Given a list of vectors or a matrix, returns the QR factorization using the 'modern' Gram-Schmidt algorithm.
'''
if type(a_list) != list:
cols = a_list.cols()
a_list = [x for x in cols]
indices = range(len(a_list))
q = []
r = [[0 for i in indices] for j in indices]
v = [a_list[i][:] for i in indices]
for i in indices:
r[i][i] = v[i].norm(2)
q.append(v[i]/r[i][i])
for j in range(i+1, len(indices)):
r[i][j] = q[i].inner_product(v[j])
v[j] = v[j] - r[i][j]*q[i]
q = matrix([q[i] for i in indices]).transpose()
return q, matrix(r)
pretty_print(html('<h2>Numerical instability of the classical Gram-Schmidt algorithm</h2>'))
def gstest(precision = slider(range(3,53), default = 10), a1 = input_box([1,1/1000,1/1000]), a2 = input_box([1,1/1000,0]), a3 = input_box([1,0,1/1000])):
myR = RealField(precision)
displayR = RealField(5)
pretty_print(html('precision in bits: ' + str(precision) + '<br>'))
A = matrix([a1,a2,a3])
A = [vector(myR,x) for x in A]
qn, rn = GS_classic(A)
qb, rb = GS_modern(A)
pretty_print(html('Classical Gram-Schmidt:'))
show(matrix(displayR,qn))
pretty_print(html('Stable Gram-Schmidt:'))
show(matrix(displayR,qb))
Equality of det(A) and det(A.tranpose())
by Marshall Hampton
xxxxxxxxxx
srg = srange(-4,4,1/10,include_endpoint=True)
def dualv(a1=slider(srg,default=1),a2=slider(srg,default=2), a3=slider(srg,default=-1),a4=slider(srg,default=3)):
A1 = arrow2d([0,0],[a1,a2],rgbcolor='black')
A2 = arrow2d([0,0],[a3,a4],rgbcolor='black')
A3 = arrow2d([0,0],[a1,a3],rgbcolor='black')
A4 = arrow2d([0,0],[a2,a4],rgbcolor='black')
p1 = polygon([[0,0],[a1,a2],[a1+a3,a2+a4],[a3,a4],[0,0]], alpha=.5)
p2 = polygon([[0,0],[a1,a3],[a1+a2,a3+a4],[a2,a4],[0,0]],rgbcolor='red', alpha=.5)
A = matrix([[a1,a2],[a3,a4]])
pretty_print(html('<h3>The determinant of a matrix is equal to the determinant of the transpose</h3>'))
pretty_print(html("$\det(%s) = \det(%s)=%s$"%(latex(A),latex(A.transpose()),latex(RR(A.determinant())))))
show(A1+A2+A3+A4+p1+p2)
Linear transformations
by Jason Grout
A square matrix defines a linear transformation which rotates and/or scales vectors. In the interact command below, the red vector represents the original vector (v) and the blue vector represents the image w under the linear transformation. You can change the angle and length of v by changing theta and r.
xxxxxxxxxx
def linear_transformation(A=matrix([[1,-1],[-1,1/2]]),theta=slider(0, 2*pi, .1), r=slider(0.1, 2, .1, default=1)):
v=vector([r*cos(theta), r*sin(theta)])
w = A*v
circles = sum([circle((0,0), radius=i, color='black') for i in [1..2]])
pretty_print(html("$%s %s=%s$"%tuple(map(latex, [A, v.column().n(4), w.column().n(4)]))))
show(v.plot(color='red')+w.plot(color='blue')+circles,aspect_ratio=1)
Gerschgorin Circle Theorem
by Marshall Hampton. This animated version requires convert (imagemagick) to be installed, but it can easily be modified to a static version. The animation illustrates the idea behind the stronger version of Gerschgorin's theorem, which says that if the disks around the eigenvalues are disjoint then there is one eigenvalue per disk. The proof is by continuity of the eigenvalues under a homotopy to a diagonal matrix.
xxxxxxxxxx
from scipy import linalg
pretty_print(html('<h2>The Gerschgorin circle theorem</h2>'))
def Gerschgorin(Ain = input_box(default='[[10,1,1/10,0],[-1,9,0,1],[1,0,2,3/10],[-.5,0,-.3,1]]', type = str, label = 'A = '), an_size = slider(1,100,1,1.0)):
A = sage_eval(Ain)
size = len(A)
pretty_print(html('$A = ' + latex(matrix(RealField(10),A))+'$'))
A = matrix(RealField(10),A)
B = [[0 for i in range(size)] for j in range(size)]
for i in range(size):
B[i][i] = A[i][i]
B = matrix(B)
frames = []
centers = [(real(q),imag(q)) for q in [A[i][i] for i in range(size)]]
radii_row = [sum([abs(A[i][j]) for j in range(i)+range(i+1,size)]) for i in range(size)]
radii_col = [sum([abs(A[j][i]) for j in range(i)+range(i+1,size)]) for i in range(size)]
x_min = min([centers[i][0]-radii_row[i] for i in range(size)]+[centers[i][0]-radii_col[i] for i in range(size)])
x_max = max([centers[i][0]+radii_row[i] for i in range(size)]+[centers[i][0]+radii_col[i] for i in range(size)])
y_min = min([centers[i][1]-radii_row[i] for i in range(size)]+[centers[i][1]-radii_col[i] for i in range(size)])
y_max = max([centers[i][1]+radii_row[i] for i in range(size)]+[centers[i][1]+radii_col[i] for i in range(size)])
if an_size > 1:
t_range= srange(0,1+1/an_size,1/an_size)
else:
t_range = [1]
for t in t_range:
C = t*A + (1-t)*B
eigs = [CDF(x) for x in linalg.eigvals(C.numpy())]
eigpoints = points([(real(q),imag(q)) for q in eigs],pointsize = 10, rgbcolor = (0,0,0))
centers = [(real(q),imag(q)) for q in [A[i][i] for i in range(size)]]
radii_row = [sum([abs(C[i][j]) for j in range(i)+range(i+1,size)]) for i in range(size)]
radii_col = [sum([abs(C[j][i]) for j in range(i)+range(i+1,size)]) for i in range(size)]
scale = max([(x_max-x_min),(y_max-y_min)])
scale = 7/scale
row_circles = sum([circle(centers[i],radii_row[i],fill=True, alpha = .3) for i in range(size)])
col_circles = sum([circle(centers[i],radii_col[i],fill=True, rgbcolor = (1,0,0), alpha = .3) for i in range(size)])
ft = eigpoints+row_circles+col_circles
frames.append(ft)
show(animate(frames,figsize = [(x_max-x_min)*scale,(y_max-y_min)*scale], xmin = x_min, xmax=x_max, ymin = y_min, ymax = y_max))
Singular value decomposition
by Marshall Hampton
xxxxxxxxxx
import scipy.linalg as lin
var('t')
def rotell(sig,umat,t,offset=0):
temp = matrix(umat)*matrix(2,1,[sig[0]*cos(t),sig[1]*sin(t)])
return [offset+temp[0][0],temp[1][0]]
def svd_vis(a11=slider(-1,1,.05,1),a12=slider(-1,1,.05,1),a21=slider(-1,1,.05,0),a22=slider(-1,1,.05,1),ofs= ('offset image from domain',False)):
rf_low = RealField(12)
my_mat = matrix(rf_low,2,2,[a11,a12,a21,a22])
u,s,vh = lin.svd(my_mat.numpy())
if ofs:
offset = 3
fsize = 6
colors = [(1,0,0),(0,0,1),(1,0,0),(0,0,1)]
else:
offset = 0
fsize = 5
colors = [(1,0,0),(0,0,1),(.7,.2,0),(0,.3,.7)]
vvects = sum([arrow([0,0],matrix(vh).row(i),rgbcolor = colors[i]) for i in (0,1)])
uvects = Graphics()
for i in (0,1):
if s[i] != 0: uvects += arrow([offset,0],vector([offset,0])+matrix(s*u).column(i),rgbcolor = colors[i+2])
pretty_print(html('<h3>Singular value decomposition: image of the unit circle and the singular vectors</h3>'))
pretty_print(html("$A = %s = %s %s %s$"%(latex(my_mat), latex(matrix(rf_low,u.tolist())), latex(matrix(rf_low,2,2,[s[0],0,0,s[1]])), latex(matrix(rf_low,vh.tolist())))))
image_ell = parametric_plot(rotell(s,u,t, offset),(0,2*pi))
graph_stuff=circle((0,0),1)+image_ell+vvects+uvects
graph_stuff.set_aspect_ratio(1)
show(graph_stuff,frame = False,axes=False,figsize=[fsize,fsize])
Discrete Fourier Transform
by Marshall Hampton
xxxxxxxxxx
import scipy.fftpack as Fourier
def discrete_fourier(f = input_box(default=sum([sin(k*x) for k in range(1,5,2)])), scale = slider(.1,20,.1,5)):
pbegin = -float(pi)*scale
pend = float(pi)*scale
pretty_print(html("<h3>Function plot and its discrete Fourier transform</h3>"))
show(plot(f, (x,pbegin, pend), plot_points = 512), figsize = [4,3])
f_vals = [f(x=ind) for ind in srange(pbegin, pend,(pend-pbegin)/512.0)]
my_fft = Fourier.fft(f_vals)
show(list_plot([abs(i) for i in my_fft], plotjoined=True), figsize = [4,3])
The Gauss-Jordan method for inverting a matrix
by Hristo Inouzhe
xxxxxxxxxx
#Choose the size D of the square matrix:
D = 3
example = [[1 if k==j else 0 for k in range(D)] for j in range(D)]
example[0][-1] = 2
example[-1][0] = 3
def _(M=input_grid(D,D, default = example,
label='Matrix to invert', to_value=matrix),
tt = text_control('Enter the bits of precision used'
' (only if you entered floating point numbers)'),
precision = slider(5,100,5,20),
auto_update=False):
if det(M)==0:
print 'Failure: Matrix is not invertible'
return
if M.base_ring() == RR:
M = M.apply_map(RealField(precision))
N=M
M=M.augment(identity_matrix(D))
print 'We construct the augmented matrix'
show(M)
for m in range(0,D-1):
if M[m,m] == 0:
lista = [(abs(M[j,m]),j) for j in range(m+1,D)]
maxi, c = max(lista)
M[c,:],M[m,:]=M[m,:],M[c,:]
print 'We permute rows %d and %d'%(m+1,c+1)
show(M)
for n in range(m+1,D):
a=M[m,m]
if M[n,m]!=0:
print "We add %s times row %d to row %d"%(-M[n,m]/a, m+1, n+1)
M=M.with_added_multiple_of_row(n,m,-M[n,m]/a)
show(M)
for m in range(D-1,-1,-1):
for n in range(m-1,-1,-1):
a=M[m,m]
if M[n,m]!=0:
print "We add %s times row %d to the row %d"%(-M[n,m]/a, m+1, n+1)
M=M.with_added_multiple_of_row(n,m,-M[n,m]/a)
show(M)
for m in range(0,D):
if M[m,m]!=1:
print 'We divide row %d by %s'%(m+1,M[m,m])
M = M.with_row_set_to_multiple_of_row(m,m,1/M[m,m])
show(M)
M=M.submatrix(0,D,D)
print 'We keep the right submatrix, which contains the inverse'
html('$$M^{-1}=%s$$'%latex(M))
print 'We check it actually is the inverse'
html('$$M^{-1}*M=%s*%s=%s$$'%(latex(M),latex(N),latex(M*N)))
...(goes all the way to invert the matrix)
Solution of an homogeneous system of linear equations
by Pablo Angulo
Coefficients are introduced as a matrix in a single text box. The number of equations and unknowns are arbitrary.
xxxxxxxxxx
from sage.misc.html import HtmlFragment
def HSLE_as_latex(A, variables):
nvars = A.ncols()
pretty_print(HtmlFragment(
r'$$\left\{\begin{array}{%s}'%('r'*(nvars+1))+
r'\\'.join('%s=&0'%(
' & '.join((r'%s%s\cdot %s'%('+' if c>0 else '',c,v) if c else '') for c,v in zip(row, variables))
if not row.is_zero() else '&'*(nvars-1)+'0'
) for row in A)+
r'\end{array}\right.$$'))
def SEL(A='[(0,1,-1,2),(-1,0,2,4), (0,-1,1,-2)]',
auto_update=False
):
M = A = matrix(eval(A))
neqs = M.nrows()
nvars = M.ncols()
var_names = ','.join('x%d'%j for j in [1..nvars])
variables = var(var_names)
HSLE_as_latex(M, variables)
pretty_print(HtmlFragment( 'SEL in matrix form'))
show(M)
pivot = {}
ibound_variables = []
for m,row in enumerate(M):
for k in range(m,nvars):
lista = [(abs(M[j,k]),j) for j in range(m,neqs)]
maxi, c = max(lista)
if maxi > 0:
ibound_variables.append(k)
if M[m,k]==0:
M[c,:],M[m,:]=M[m,:],M[c,:]
pretty_print( HtmlFragment('We permute rows %d and %d'%(m+1,c+1)))
show(M)
pivot[m] = k
break
a=M[m,k]
for n in range(m+1,neqs):
if M[n,k]!=0:
pretty_print( HtmlFragment("We add %s times row %d to row %d"%(-M[n,k]/a, m+1, n+1)))
M=M.with_added_multiple_of_row(n,m,-M[n,k]/a)
show(M)
pretty_print( HtmlFragment('Equivalent system of equations'))
HSLE_as_latex(M, variables)
SEL_type = 'compatible'
null_rows = None
for k,row in enumerate(M):
if row.is_zero():
pretty_print( HtmlFragment('We remove trivial 0=0 equations'))
M = M[:k,:]
HSLE_as_latex(M, variables)
ifree_variables = [k for k in range(nvars) if k not in ibound_variables]
bound_variables = [variables[k] for k in ibound_variables]
free_variables = [variables[k] for k in ifree_variables]
pretty_print( HtmlFragment('Free variables: %s'% free_variables))
pretty_print( HtmlFragment('Bound variables: %s'% bound_variables))
reduced_eqs = [
sum(c*v for c,v in zip(row, variables))==0
for row in M
]
xvector = vector(variables)
if len(bound_variables)==1:
soldict = solve(reduced_eqs, bound_variables[0], solution_dict=True)[0]
else:
soldict = solve(reduced_eqs, bound_variables, solution_dict=True)[0]
pretty_print( HtmlFragment('Solution in parametric form'))
parametric_sol = matrix(
xvector.apply_map(lambda s:s.subs(soldict))
).transpose()
show(parametric_sol)
pretty_print( HtmlFragment('Generators'))
pretty_print( HtmlFragment(
r'$$\langle %s\rangle$$'%','.join(latex(
parametric_sol.subs(dict((variables[k],1 if j==k else 0) for k in ifree_variables))
) for j in ifree_variables)
))
pretty_print( HtmlFragment('Dimension is %d'%len(free_variables)))