Differences between revisions 1 and 28 (spanning 27 versions)
Revision 1 as of 2008-05-07 13:28:12
Size: 5314
Editor: schilly
Comment:
Revision 28 as of 2017-12-08 17:02:34
Size: 11458
Editor: daholzfeind
Comment: Because 'det' is an operator, we display it in "mathrm" or to be precise as '\det'.
Deletions are marked like this. Additions are marked like this.
Line 2: Line 2:
goto [:interact:interact main page] goto [[interact|interact main page]]

<<TableOfContents>>
Line 5: Line 7:
by Marshall Hampton (tested by William Stein, who thinks this is really nice!)
{{{
by Marshall Hampton
{{{#!sagecell
Line 17: Line 19:
    v = [a_list[i].copy() for i in indices]     v = [a_list[i][:] for i in indices]
Line 22: Line 24:
        r[i][i] = (v[i]*v[i])^(1/2)         r[i][i] = (v[i]*v[i])**(1/2)
Line 36: Line 38:
    v = [a_list[i].copy() for i in indices]     v = [a_list[i][:] for i in indices]
Line 45: Line 47:
html('<h2>Numerical instability of the classical Gram-Schmidt algorithm</h2>') pretty_print(html('<h2>Numerical instability of the classical Gram-Schmidt algorithm</h2>'))
Line 50: Line 52:
    html('precision in bits: ' + str(precision) + '<br>')     pretty_print(html('precision in bits: ' + str(precision) + '<br>'))
Line 55: Line 57:
    html('Classical Gram-Schmidt:')     pretty_print(html('Classical Gram-Schmidt:'))
Line 57: Line 59:
    html('Stable Gram-Schmidt:')     pretty_print(html('Stable Gram-Schmidt:'))
Line 60: Line 62:
attachment:GramSchmidt.png
{{attachment:GramSchmidt.png}}

== Equality of det(A) and det(A.tranpose()) ==
by Marshall Hampton
{{{#!sagecell
srg = srange(-4,4,1/10,include_endpoint=True)
@interact
def dualv(a1=slider(srg,default=1),a2=slider(srg,default=2), a3=slider(srg,default=-1),a4=slider(srg,default=3)):
    A1 = arrow2d([0,0],[a1,a2],rgbcolor='black')
    A2 = arrow2d([0,0],[a3,a4],rgbcolor='black')
    A3 = arrow2d([0,0],[a1,a3],rgbcolor='black')
    A4 = arrow2d([0,0],[a2,a4],rgbcolor='black')
    p1 = polygon([[0,0],[a1,a2],[a1+a3,a2+a4],[a3,a4],[0,0]], alpha=.5)
    p2 = polygon([[0,0],[a1,a3],[a1+a2,a3+a4],[a2,a4],[0,0]],rgbcolor='red', alpha=.5)
    A = matrix([[a1,a2],[a3,a4]])
    pretty_print(html('<h3>The determinant of a matrix is equal to the determinant of the transpose</h3>'))
    pretty_print(html("$\det(%s) = \det(%s)=%s$"%(latex(A),latex(A.transpose()),latex(RR(A.determinant())))))
    show(A1+A2+A3+A4+p1+p2)
}}}
{{attachment:Det_transpose.png}}
Line 68: Line 88:
{{{
@interact
def linear_transformation(theta=slider(0, 2*pi, .1), r=slider(0.1, 2, .1, default=1)):
    A=matrix([[1,-1],[-1,1/2]])
{{{#!sagecell
@interact
def linear_transformation(A=matrix([[1,-1],[-1,1/2]]),theta=slider(0, 2*pi, .1), r=slider(0.1, 2, .1, default=1)):
Line 74: Line 93:
    circles = sum([circle((0,0), radius=i, rgbcolor=(0,0,0)) for i in [1..2]])
    print jsmath("v = %s,\; %s v=%s"%(v.n(4),latex(A),w.n(4)))
    show(v.plot(rgbcolor=(1,0,0))+w.plot(rgbcolor=(0,0,1))+circles,aspect_ratio=1)
}}}
attachment:Linear-Transformations.png
    circles = sum([circle((0,0), radius=i, color='black') for i in [1..2]])
    pretty_print(html("$%s %s=%s$"%tuple(map(latex, [A, v.column().n(4), w.column().n(4)]))))
    show(v.plot(color='red')+w.plot(color='blue')+circles,aspect_ratio=1)
}}}
{{attachment:Linear-Transformations.png}}

== Gerschgorin Circle Theorem ==
by Marshall Hampton. This animated version requires convert (imagemagick) to be installed, but it can easily be modified to a static version.
The animation illustrates the idea behind the stronger version of Gerschgorin's theorem, which says that if the disks around the eigenvalues are disjoint then there is one eigenvalue per disk. The proof is by continuity of the eigenvalues under a homotopy to a diagonal matrix.
{{{#!sagecell
from scipy import linalg
pretty_print(html('<h2>The Gerschgorin circle theorem</h2>'))
@interact
def Gerschgorin(Ain = input_box(default='[[10,1,1/10,0],[-1,9,0,1],[1,0,2,3/10],[-.5,0,-.3,1]]', type = str, label = 'A = '), an_size = slider(1,100,1,1.0)):
    A = sage_eval(Ain)
    size = len(A)
    pretty_print(html('$A = ' + latex(matrix(RealField(10),A))+'$'))
    A = matrix(RealField(10),A)
    B = [[0 for i in range(size)] for j in range(size)]
    for i in range(size):
        B[i][i] = A[i][i]
    B = matrix(B)
    frames = []

    centers = [(real(q),imag(q)) for q in [A[i][i] for i in range(size)]]
    radii_row = [sum([abs(A[i][j]) for j in range(i)+range(i+1,size)]) for i in range(size)]
    radii_col = [sum([abs(A[j][i]) for j in range(i)+range(i+1,size)]) for i in range(size)]
    x_min = min([centers[i][0]-radii_row[i] for i in range(size)]+[centers[i][0]-radii_col[i] for i in range(size)])
    x_max = max([centers[i][0]+radii_row[i] for i in range(size)]+[centers[i][0]+radii_col[i] for i in range(size)])
    y_min = min([centers[i][1]-radii_row[i] for i in range(size)]+[centers[i][1]-radii_col[i] for i in range(size)])
    y_max = max([centers[i][1]+radii_row[i] for i in range(size)]+[centers[i][1]+radii_col[i] for i in range(size)])

    if an_size > 1:
        t_range= srange(0,1+1/an_size,1/an_size)
    else:
        t_range = [1]
    for t in t_range:
        C = t*A + (1-t)*B
        eigs = [CDF(x) for x in linalg.eigvals(C.numpy())]
        eigpoints = points([(real(q),imag(q)) for q in eigs],pointsize = 10, rgbcolor = (0,0,0))
        centers = [(real(q),imag(q)) for q in [A[i][i] for i in range(size)]]
        radii_row = [sum([abs(C[i][j]) for j in range(i)+range(i+1,size)]) for i in range(size)]
        radii_col = [sum([abs(C[j][i]) for j in range(i)+range(i+1,size)]) for i in range(size)]
        scale = max([(x_max-x_min),(y_max-y_min)])
        scale = 7/scale
        row_circles = sum([circle(centers[i],radii_row[i],fill=True, alpha = .3) for i in range(size)])
        col_circles = sum([circle(centers[i],radii_col[i],fill=True, rgbcolor = (1,0,0), alpha = .3) for i in range(size)])
        ft = eigpoints+row_circles+col_circles
        frames.append(ft)
    show(animate(frames,figsize = [(x_max-x_min)*scale,(y_max-y_min)*scale], xmin = x_min, xmax=x_max, ymin = y_min, ymax = y_max))
}}}
{{attachment:Gerschanimate.png}}

{{attachment:Gersch.gif}}
Line 82: Line 150:
{{{ {{{#!sagecell
Line 89: Line 157:
def svd_vis(a11=slider(-1,1,.05,1),a12=slider(-1,1,.05,1),a21=slider(-1,1,.05,0),a22=slider(-1,1,.05,1),ofs= selector(['Off','On'],label='offset image from domain')): def svd_vis(a11=slider(-1,1,.05,1),a12=slider(-1,1,.05,1),a21=slider(-1,1,.05,0),a22=slider(-1,1,.05,1),ofs= ('offset image from domain',False)):
Line 93: Line 161:
    if ofs == 'On':     if ofs:
Line 105: Line 173:
    html('<h3>Singular value decomposition: image of the unit circle and the singular vectors</h3>')
    print jsmath("A = %s = %s %s %s"%(latex(my_mat), latex(matrix(rf_low,u.tolist())), latex(matrix(rf_low,2,2,[s[0],0,0,s[1]])), latex(matrix(rf_low,vh.tolist())))) 
    image_ell = parametric_plot(rotell(s,u,t, offset),0,2*pi)
    pretty_print(html('<h3>Singular value decomposition: image of the unit circle and the singular vectors</h3>'))
    pretty_print(html("$A = %s = %s %s %s$"%(latex(my_mat), latex(matrix(rf_low,u.tolist())), latex(matrix(rf_low,2,2,[s[0],0,0,s[1]])), latex(matrix(rf_low,vh.tolist())))))
    image_ell = parametric_plot(rotell(s,u,t, offset),(0,2*pi))
Line 110: Line 178:
    show(graph_stuff,frame = False,axes=False,figsize=[fsize,fsize])
}}}
attachment:svd1.png
    show(graph_stuff,frame = False,axes=False,figsize=[fsize,fsize])}}}
{{attachment:svd1.png}}
Line 116: Line 183:
{{{ {{{#!sagecell
Line 120: Line 187:
    var('x')
Line 123: Line 189:
    html("<h3>Function plot and its discrete Fourier transform</h3>")
    show(plot(f, pbegin, pend, plot_points = 512), figsize = [4,3])
    f_vals = [f(ind) for ind in srange(pbegin, pend,(pend-pbegin)/512.0)]
    pretty_print(html("<h3>Function plot and its discrete Fourier transform</h3>"))
    show(plot(f, (x,pbegin, pend), plot_points = 512), figsize = [4,3])
    f_vals = [f(x=ind) for ind in srange(pbegin, pend,(pend-pbegin)/512.0)]
Line 127: Line 193:
    show(list_plot([abs(x) for x in my_fft], plotjoined=True), figsize = [4,3])
}}}
attachment:dfft1.png
    show(list_plot([abs(i) for i in my_fft], plotjoined=True), figsize = [4,3])
}}}
{{attachment:dfft1.png}}

== The Gauss-Jordan method for inverting a matrix ==
by Hristo Inouzhe
{{{#!sagecell
#Choose the size D of the square matrix:
D = 3

example = [[1 if k==j else 0 for k in range(D)] for j in range(D)]
example[0][-1] = 2
example[-1][0] = 3

@interact
def _(M=input_grid(D,D, default = example,
                   label='Matrix to invert', to_value=matrix),
      tt = text_control('Enter the bits of precision used'
                        ' (only if you entered floating point numbers)'),
      precision = slider(5,100,5,20),
      auto_update=False):
    if det(M)==0:
        print 'Failure: Matrix is not invertible'
        return
    if M.base_ring() == RR:
        M = M.apply_map(RealField(precision))
    N=M
    M=M.augment(identity_matrix(D))
    print 'We construct the augmented matrix'
    show(M)
    for m in range(0,D-1):
        if M[m,m] == 0:
            lista = [(M[j,m],j) for j in range(m+1,D)]
            maxi, c = max(lista)
            M[c,:],M[m,:]=M[m,:],M[c,:]
            print 'We permute rows %d and %d'%(m+1,c+1)
            show(M)
        for n in range(m+1,D):
            a=M[m,m]
            if M[n,m]!=0:
                print "We add %s times row %d to row %d"%(-M[n,m]/a, m+1, n+1)
                M=M.with_added_multiple_of_row(n,m,-M[n,m]/a)
                show(M)
    for m in range(D-1,-1,-1):
        for n in range(m-1,-1,-1):
            a=M[m,m]
            if M[n,m]!=0:
                print "We add %s times row %d to the row %d"%(-M[n,m]/a, m+1, n+1)
                M=M.with_added_multiple_of_row(n,m,-M[n,m]/a)
                show(M)
    for m in range(0,D):
        if M[m,m]!=1:
            print 'We divide row %d by %s'%(m+1,M[m,m])
            M = M.with_row_set_to_multiple_of_row(m,m,1/M[m,m])
            show(M)
    M=M.submatrix(0,D,D)
    print 'We keep the right submatrix, which contains the inverse'
    html('$$M^{-1}=%s$$'%latex(M))
    print 'We check it actually is the inverse'
    html('$$M^{-1}*M=%s*%s=%s$$'%(latex(M),latex(N),latex(M*N)))
}}}
{{attachment:gauss-jordan.png}}

...(goes all the way to invert the matrix)

Sage Interactions - Linear Algebra

goto interact main page

Numerical instability of the classical Gram-Schmidt algorithm

by Marshall Hampton

GramSchmidt.png

Equality of det(A) and det(A.tranpose())

by Marshall Hampton

Det_transpose.png

Linear transformations

by Jason Grout

A square matrix defines a linear transformation which rotates and/or scales vectors. In the interact command below, the red vector represents the original vector (v) and the blue vector represents the image w under the linear transformation. You can change the angle and length of v by changing theta and r.

Linear-Transformations.png

Gerschgorin Circle Theorem

by Marshall Hampton. This animated version requires convert (imagemagick) to be installed, but it can easily be modified to a static version. The animation illustrates the idea behind the stronger version of Gerschgorin's theorem, which says that if the disks around the eigenvalues are disjoint then there is one eigenvalue per disk. The proof is by continuity of the eigenvalues under a homotopy to a diagonal matrix.

Gerschanimate.png

Gersch.gif

Singular value decomposition

by Marshall Hampton

svd1.png

Discrete Fourier Transform

by Marshall Hampton

dfft1.png

The Gauss-Jordan method for inverting a matrix

by Hristo Inouzhe

gauss-jordan.png

...(goes all the way to invert the matrix)

interact/linear_algebra (last edited 2020-11-27 12:10:23 by pang)