Processing Math: Done
jsMath
Differences between revisions 1 and 16 (spanning 15 versions)
Revision 1 as of 2008-05-07 13:28:12
Size: 5314
Editor: schilly
Comment:
Revision 16 as of 2012-04-18 18:23:57
Size: 10487
Editor: bvarberg
Comment:
Deletions are marked like this. Additions are marked like this.
Line 2: Line 2:
goto [:interact:interact main page] goto [[interact|interact main page]]

<<TableOfContents>>
Line 6: Line 8:
{{{ {{{#!sagecell
Line 60: Line 62:
attachment:GramSchmidt.png
{{attachment:GramSchmidt.png}}
Line 68: Line 69:
{{{ {{{#!sagecell
Line 78: Line 79:
attachment:Linear-Transformations.png {{attachment:Linear-Transformations.png}}

== Gerschgorin Circle Theorem ==
by Marshall Hampton. This animated version requires convert (imagemagick) to be installed, but it can easily be modified to a static version.
The animation illustrates the idea behind the stronger version of Gerschgorin's theorem, which says that if the disks around the eigenvalues are disjoint then there is one eigenvalue per disk. The proof is by continuity of the eigenvalues under a homotopy to a diagonal matrix.
{{{#!sagecell
from scipy import linalg
html('<h2>The Gerschgorin circle theorem</h2>')
@interact
def Gerschgorin(Ain = input_box(default='[[10,1,1/10,0],[-1,9,0,1],[1,0,2,3/10],[-.5,0,-.3,1]]', type = str, label = 'A = '), an_size = slider(1,100,1,1.0)):
    A = sage_eval(Ain)
    size = len(A)
    print jsmath('A = ' + latex(matrix(RealField(10),A)))
    A = matrix(RealField(10),A)
    B = [[0 for i in range(size)] for j in range(size)]
    for i in range(size):
        B[i][i] = A[i][i]
    B = matrix(B)
    frames = []

    centers = [(real(q),imag(q)) for q in [A[i][i] for i in range(size)]]
    radii_row = [sum([abs(A[i][j]) for j in range(i)+range(i+1,size)]) for i in range(size)]
    radii_col = [sum([abs(A[j][i]) for j in range(i)+range(i+1,size)]) for i in range(size)]
    x_min = min([centers[i][0]-radii_row[i] for i in range(size)]+[centers[i][0]-radii_col[i] for i in range(size)])
    x_max = max([centers[i][0]+radii_row[i] for i in range(size)]+[centers[i][0]+radii_col[i] for i in range(size)])
    y_min = min([centers[i][1]-radii_row[i] for i in range(size)]+[centers[i][1]-radii_col[i] for i in range(size)])
    y_max = max([centers[i][1]+radii_row[i] for i in range(size)]+[centers[i][1]+radii_col[i] for i in range(size)])

    if an_size > 1:
        t_range= srange(0,1+1/an_size,1/an_size)
    else:
        t_range = [1]
    for t in t_range:
        C = t*A + (1-t)*B
        eigs = [CDF(x) for x in linalg.eigvals(C.numpy())]
        eigpoints = points([(real(q),imag(q)) for q in eigs],pointsize = 10, rgbcolor = (0,0,0))
        centers = [(real(q),imag(q)) for q in [A[i][i] for i in range(size)]]
        radii_row = [sum([abs(C[i][j]) for j in range(i)+range(i+1,size)]) for i in range(size)]
        radii_col = [sum([abs(C[j][i]) for j in range(i)+range(i+1,size)]) for i in range(size)]
        scale = max([(x_max-x_min),(y_max-y_min)])
        scale = 7/scale
        row_circles = sum([circle(centers[i],radii_row[i],fill=True, alpha = .3) for i in range(size)])
        col_circles = sum([circle(centers[i],radii_col[i],fill=True, rgbcolor = (1,0,0), alpha = .3) for i in range(size)])
        ft = eigpoints+row_circles+col_circles
        frames.append(ft)
    show(animate(frames,figsize = [(x_max-x_min)*scale,(y_max-y_min)*scale], xmin = x_min, xmax=x_max, ymin = y_min, ymax = y_max))
}}}
{{attachment:Gerschanimate.png}}

{{attachment:Gersch.gif}}
Line 82: Line 132:
{{{ {{{#!sagecell
Line 106: Line 156:
    print jsmath("A = %s = %s %s %s"%(latex(my_mat), latex(matrix(rf_low,u.tolist())), latex(matrix(rf_low,2,2,[s[0],0,0,s[1]])), latex(matrix(rf_low,vh.tolist()))))     print jsmath("$A = %s = %s %s %s$"%(latex(my_mat), latex(matrix(rf_low,u.tolist())), latex(matrix(rf_low,2,2,[s[0],0,0,s[1]])), latex(matrix(rf_low,vh.tolist()))))
Line 112: Line 162:
attachment:svd1.png {{attachment:svd1.png}}
Line 116: Line 166:
{{{ {{{#!sagecell
Line 129: Line 179:
attachment:dfft1.png {{attachment:dfft1.png}}

== The Gauss-Jordan method for inverting a matrix ==
by Hristo Inouzhe
{{{#!sagecell
#Choose the size D of the square matrix:
D = 3

example = [[1 if k==j else 0 for k in range(D)] for j in range(D)]
example[0][-1] = 2
example[-1][0] = 3

@interact
def _(M=input_grid(D,D, default = example,
                   label='Matrix to invert', to_value=matrix),
      tt = text_control('Enter the bits of precision used'
                        ' (only if you entered floating point numbers)'),
      precision = slider(5,100,5,20),
      auto_update=False):
    if det(M)==0:
        print 'Failure: Matrix is not invertible'
        return
    if M.base_ring() == RR:
        M = M.apply_map(RealField(precision))
    N=M
    M=M.augment(identity_matrix(D))
    print 'We construct the augmented matrix'
    show(M)
    for m in range(0,D-1):
        if M[m,m] == 0:
            lista = [(M[j,m],j) for j in range(m,D)]
            maxi, c = max(lista)
            M[c,:],M[m,:]=M[m,:],M[c,:]
            print 'We permute rows %d and %d'%(m+1,c+1)
            show(M)
        for n in range(m+1,D):
            a=M[m,m]
            if M[n,m]!=0:
                print "We add %s times row %d to row %d"%(-M[n,m]/a, m+1, n+1)
                M=M.with_added_multiple_of_row(n,m,-M[n,m]/a)
                show(M)
    for m in range(D-1,-1,-1):
        for n in range(m-1,-1,-1):
            a=M[m,m]
            if M[n,m]!=0:
                print "We add %s times row %d to the row %d"%(-M[n,m]/a, m+1, n+1)
                M=M.with_added_multiple_of_row(n,m,-M[n,m]/a)
                show(M)
    for m in range(0,D):
        if M[m,m]!=1:
            print 'We divide row %d by %s'%(m+1,M[m,m])
            M = M.with_row_set_to_multiple_of_row(m,m,1/M[m,m])
            show(M)
    M=M.submatrix(0,D,D)
    print 'We keep the right submatrix, which contains the inverse'
    html('M1='%latex(M))
    print 'We check it actually is the inverse'
    html('M1M='%(latex(M),latex(N),latex(M*N)))
}}}
{{attachment:gauss-jordan.png}}

...(goes all the way to invert the matrix)

Sage Interactions - Linear Algebra

goto interact main page

Numerical instability of the classical Gram-Schmidt algorithm

by Marshall Hampton (tested by William Stein, who thinks this is really nice!)

GramSchmidt.png

Linear transformations

by Jason Grout

A square matrix defines a linear transformation which rotates and/or scales vectors. In the interact command below, the red vector represents the original vector (v) and the blue vector represents the image w under the linear transformation. You can change the angle and length of v by changing theta and r.

Linear-Transformations.png

Gerschgorin Circle Theorem

by Marshall Hampton. This animated version requires convert (imagemagick) to be installed, but it can easily be modified to a static version. The animation illustrates the idea behind the stronger version of Gerschgorin's theorem, which says that if the disks around the eigenvalues are disjoint then there is one eigenvalue per disk. The proof is by continuity of the eigenvalues under a homotopy to a diagonal matrix.

Gerschanimate.png

Gersch.gif

Singular value decomposition

by Marshall Hampton

svd1.png

Discrete Fourier Transform

by Marshall Hampton

dfft1.png

The Gauss-Jordan method for inverting a matrix

by Hristo Inouzhe

gauss-jordan.png

...(goes all the way to invert the matrix)

interact/linear_algebra (last edited 2020-11-27 12:10:23 by pang)