Differences between revisions 17 and 20 (spanning 3 versions)
Revision 17 as of 2011-02-10 22:53:42
Size: 15503
Editor: pang
Comment: Added Crofton's formula
Revision 20 as of 2012-04-18 18:12:37
Size: 18447
Editor: bvarberg
Comment:
Deletions are marked like this. Additions are marked like this.
Line 8: Line 8:
{{{ {{{#!sagecell
Line 36: Line 36:
{{{ {{{#!sagecell
Line 52: Line 52:
    normal=(gammap[1]/norma(gammap), -gammap[0]/norma(gammap))     np=norma(gammap)
Line 54: Line 54:
         np=norma(gammap)
Line 57: Line 55:
    pe=gammap[0]*gammapp[0]+gammap[1]*gammapp[1]
    normal=(gammap[1]/np, -gammap[0]/np)
Line 80: Line 79:
    show(grafica,aspect_ratio=1,xmin=-2,xmax=2,ymin=-2,ymax=2)}}}     show(grafica,aspect_ratio=1,xmin=-2,xmax=2,ymin=-2,ymax=2)
}}}
Line 86: Line 86:
{{{ {{{#!sagecell
Line 146: Line 146:
{{{ {{{#!sagecell
Line 203: Line 203:
{{{ {{{#!sagecell
Line 247: Line 247:
{{{ {{{#!sagecell
Line 335: Line 335:
{{{ {{{#!sagecell
Line 361: Line 361:


== Banchoff-Pohl area ==
by Pablo Angulo. Computes the Banchoff-Pohl "area enclosed by a spatial curve", by throwing some random lines and computing the linking number with the given curve. Lines not linked to the given curve are displayed in red, linked lines are displayed in green.

{{{#!sagecell
from collections import defaultdict
var('t')
a = 0; b= 2*pi

def random_line3d(bound):
    '''Random line in R^3: first choose the guiding vector of the line,
    then choose a point in the plane p perpendicular to that vector.
    '''
    p = vector([(2*random() - 1) for _ in range(3)])
    v = p/norm(p)
    v2, v3 = matrix(v).right_kernel().basis()
    if det(matrix([v, v2, v3]))<0:
        v2, v3 = v3, v2
    v2 = v2/norm(v2)
    v3 = v3 - (v3*v2)*v2
    v3 = v3/norm(v3)
    return v, (2*random()*bound - bound, v2), (2*random()*bound - bound, v3)

def winding_number(x, y, x0, y0):
    x -= x0
    y -= y0
    r2 = x^2 + y^2
    xp = x.derivative(t)
    yp = y.derivative(t)
    integrando(t) = (x*yp -y*xp)/r2
    i,e = numerical_integral(integrando, a, b)
    return round(i/(2*pi))

def linking_number(curve, line):
    v, (a2, v2), (a3, v3) = line
    M = matrix([v, v2, v3])
# curve2d = (curve*M.inverse())[1:] #This is VERY slow, for some reason!
    curve2d = sum(c*v for c,v in zip(curve,M.inverse()))[1:]
    x, y = curve2d
    return winding_number(x, y, a2,a3)

def color_ln(number):
    if number:
        return (0,1-1/(1+number),0)
    else:
        return (1,0,0)

def banchoff_pohl(curve, L, M):
    ln_d = defaultdict(int)
    pp = parametric_plot3d(curve, (t,0,2*pi), thickness=2)
    for k in range(L):
        a_line = random_line3d(M)
        ln = abs(linking_number(curve, a_line))
        v, (l1, v1), (l2, v2) = a_line
        pp += parametric_plot3d(l1*v1+l2*v2+t*v,(t,-2,2),
                                color=color_ln(ln))
        ln_d[ln] += 1
    return ln_d, pp

def print_stats(d):
    print 'Number of lines with linking number k:'
    print ', '.join('%d:%d'%(k,v) for k,v in d.iteritems())

@interact
def bp_interact( u1 = text_control('x, y, z coordinates of a closed space curve in [0,2*pi]'),
                 curvax = input_box(cos(t), label='x(t)' ),
                 curvay = input_box(sin(t), label='y(t)' ),
                 curvaz = input_box(0, label='y(t)' ),
                 u2 = text_control('The curve should be contained in a ball of radius M'),
                 M = 1,
                 u3 = text_control('Use L lines chosen randomly'),
                 L = 10):
    ln_d, p = banchoff_pohl(vector((curvax, curvay, curvaz)), L, M)
    p.show(aspect_ratio=1, xmin=-2, xmax=2, ymin=-2,ymax=2)
    bp_area_aprox = (sum(k^2*v for k,v in ln_d.iteritems())/L)*2*pi*M^2
    print 'Bahnchoff-Pohl area of the curve(aprox): %f'%bp_area_aprox
    print_stats(ln_d)
}}}

{{attachment:banchoff-pohl.png}}

Sage Interactions - Geometry

goto interact main page

Intersecting tetrahedral reflections

by Marshall Hampton. Inspired by a question from Hans Schepker of Glass Geometry.

tetrareflect.png

Evolutes

by Pablo Angulo. Computes the evolute of a plane curve given in parametric coordinates. The curve must be parametrized from the interval [0,2pi].

evoluta3.png

Geodesics on a parametric surface

by Antonio Valdés and Pablo Angulo. A first interact allows the user to introduce a parametric surface, and draws it. Then a second interact draws a geodesic within the surface. The separation is so that after the first interact, the geodesic equations are "compiled", and then the second interact is faster.

geodesics1.png

geodesics2.png

Dimensional Explorer

By Eviatar Bach

Renders 2D images (perspective or spring-layout) and 3D models of 0-10 dimensional hypercubes. It also displays number of edges and vertices.

dimensions.png

Crofton's formula

by Pablo Angulo. Illustrates Crofton's formula by throwing some random lines and computing the intersection number with a given curve. May use either solve for exact computation of the intersections, or may also approximate the curve by straight segments (this is the default).

crofton4.png

Banchoff-Pohl area

by Pablo Angulo. Computes the Banchoff-Pohl "area enclosed by a spatial curve", by throwing some random lines and computing the linking number with the given curve. Lines not linked to the given curve are displayed in red, linked lines are displayed in green.

banchoff-pohl.png

interact/geometry (last edited 2023-08-30 08:21:15 by pang)