Processing Math: Done
No jsMath TeX fonts found -- using unicode fonts instead.
This may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 6 and 8 (spanning 2 versions)
Revision 6 as of 2009-03-12 13:59:55
Size: 7466
Editor: pang
Comment: added figures
Revision 8 as of 2009-04-30 06:54:11
Size: 7492
Editor: DanDrake
Comment: fix Euler's method @interact
Deletions are marked like this. Additions are marked like this.
Line 38: Line 38:
    show(plot(y_exact(x),start,stop,rgbcolor=(1,0,0))+line([[xvals[index],sol[index]] for index in range(len(sol))]),xmin=start,xmax = stop, ymax = sol_max, ymin = sol_min)         show(plot(y_exact(x),start,stop,rgbcolor=(1,0,0))+line([[xvals[index],sol[index]] for index in range(len(sol))]),xmin=start,xmax = stop, ymax = sol_max, ymin = sol_min)
Line 48: Line 48:
by Mike Hansen (tested and updated by William Stein) by Mike Hansen (tested and updated by William Stein, and later by Dan Drake)
Line 51: Line 51:
from sage.ext.fast_eval import fast_float
Line 52: Line 53:
def _(f = input_box(default=y), g=input_box(default=-x*y+x^3-x), 
      xmin=input_box(default=-1), xmax=input_box(default=1), 
      ymin=input_box(default=-1), ymax=input_box(default=1), 
      start_x=input_box(default=0.5), start_y=input_box(default=0.5),  
def _(f = input_box(default=y), g=input_box(default=-x*y+x^3-x),
      xmin=input_box(default=-1), xmax=input_box(default=1),
      ymin=input_box(default=-1), ymax=input_box(default=1),
      start_x=input_box(default=0.5), start_y=input_box(default=0.5),
Line 57: Line 58:
    old_f = f
    f = f.function(x,y)
    old_g = g
    g = g.function(x,y)
    ff = fast_float(f, 'x', 'y')
    gg = fast_float(g, 'x', 'y')
Line 67: Line 66:
            points.append( (xx+step_size*f(xx,yy), yy+step_size*g(xx,yy)) )             points.append( (xx + step_size * ff(xx,yy), yy + step_size * gg(xx,yy)) )
Line 76: Line 75:
    
    html(r"<h2>$ \frac{dx}{dt} = %s \frac{dy}{dt} = %s$</h2>"%(latex(old_f),latex(old_g)))
    print "Step size: %s"%step_size
    print "Steps: %s"%steps

    html(r"$\displaystyle\frac{dx}{dt} = %s \displaystyle\frac{dy}{dt} = %s$" % (latex(f),latex(g)))
Line 92: Line 89:
def _(fin = input_box(default=y+exp(x/10)-1/3*((x-1/2)^2+y^3)*x-x*y^3), gin=input_box(default=x^3-x+1/100*exp(y*x^2+x*y^2)-0.7*x), 
      xmin=input_box(default=-1), xmax=input_box(default=1.8), 
      ymin=input_box(default=-1.3), ymax=input_box(default=1.5), 
      x_start=(-1,(-2,2)), y_start=(0,(-2,2)), error=(0.5,(0,1)), 
def _(fin = input_box(default=y+exp(x/10)-1/3*((x-1/2)^2+y^3)*x-x*y^3), gin=input_box(default=x^3-x+1/100*exp(y*x^2+x*y^2)-0.7*x),
      xmin=input_box(default=-1), xmax=input_box(default=1.8),
      ymin=input_box(default=-1.3), ymax=input_box(default=1.5),
      x_start=(-1,(-2,2)), y_start=(0,(-2,2)), error=(0.5,(0,1)),
Line 109: Line 106:
    g(x,y)=gin    
    
    g(x,y)=gin
Line 113: Line 110:
    
Line 115: Line 112:
    path = []           path = []
Line 121: Line 118:
      T.function = lambda t, yp: [ff(yp[0],yp[1]), gg(yp[0],yp[1])]         T.function = lambda t, yp: [ff(yp[0],yp[1]), gg(yp[0],yp[1])]
Line 155: Line 152:
def _(tiempo=(0.1*j for j in (0..10))):
    ft=sum(a*sin(x*n/2)*exp(-k*(n/2)^2*tiempo) for n,a in alpha)
    pt = plot(ft,0, 2*pi, color='green', thickness=2)
    show(p + pt, ymin = -.2)
def _(tiempo = (0.1*j for j in (0..10)) ):
    ft = sum( a*sin(x*n/2)*exp(-k*(n/2)^2*tiempo) for n,a in alpha)
    pt = plot(ft, 0, 2*pi, color='green', thickness=2)
    show( p + pt, ymin = -.2)
Line 167: Line 164:
#cython code implementing a very simple finite diference scheme
Line 174: Line 172:
    s=k*dt/(dx**2) #tenemos que sustituir ^ por ** para exponenciar     s=k*dt/(dx**2) #we cannot use ^ for exponentiation in cython
Line 181: Line 179:
#Versión interactiva usando el código cython #interact box wrapping the code above
Line 192: Line 190:
    
Line 195: Line 193:
        print 's=%f > 1/2!!! El metodo no es estable'%s
    
        print 's=%f > 1/2!!! The method is not stable'%s

Sage Interactions - Differential Equations

goto interact main page

Euler's Method in one variable

by Marshall Hampton. This needs some polishing but its usable as is.

def tab_list(y, headers = None):
    '''
    Converts a list into an html table with borders.
    '''
    s = '<table border = 1>'
    if headers:
        for q in headers:
            s = s + '<th>' + str(q) + '</th>'
    for x in y:
        s = s + '<tr>'
        for q in x:
            s = s + '<td>' + str(q) + '</td>'
        s = s + '</tr>'
    s = s + '</table>'
    return s
var('x y')
@interact
def euler_method(y_exact_in = input_box('-cos(x)+1.0', type = str, label = 'Exact solution = '), y_prime_in = input_box('sin(x)', type = str, label = "y' = "), start = input_box(0.0, label = 'x starting value: '), stop = input_box(6.0, label = 'x stopping value: '), startval = input_box(0.0, label = 'y starting value: '), nsteps = slider([2^m for m in range(0,10)], default = 10, label = 'Number of steps: '), show_steps = slider([2^m for m in range(0,10)], default = 8, label = 'Number of steps shown in table: ')):
    y_exact = lambda x: eval(y_exact_in)
    y_prime = lambda x,y: eval(y_prime_in)
    stepsize = float((stop-start)/nsteps)
    steps_shown = max(nsteps,show_steps)
    sol = [startval]
    xvals = [start]
    for step in range(nsteps):
        sol.append(sol[-1] + stepsize*y_prime(xvals[-1],sol[-1]))
        xvals.append(xvals[-1] + stepsize)
    sol_max = max(sol + [find_maximum_on_interval(y_exact,start,stop)[0]])
    sol_min = min(sol + [find_minimum_on_interval(y_exact,start,stop)[0]])
    show(plot(y_exact(x),start,stop,rgbcolor=(1,0,0))+line([[xvals[index],sol[index]] for index in range(len(sol))]),xmin=start,xmax = stop, ymax = sol_max, ymin = sol_min)
    if nsteps < steps_shown:
        table_range = range(len(sol))
    else:
        table_range = range(0,floor(steps_shown/2)) + range(len(sol)-floor(steps_shown/2),len(sol))
    html(tab_list([[i,xvals[i],sol[i]] for i in table_range], headers = ['step','x','y']))

eulermethod.png

Vector Fields and Euler's Method

by Mike Hansen (tested and updated by William Stein, and later by Dan Drake)

x,y = var('x,y')
from sage.ext.fast_eval import fast_float
@interact
def _(f = input_box(default=y), g=input_box(default=-x*y+x^3-x),
      xmin=input_box(default=-1), xmax=input_box(default=1),
      ymin=input_box(default=-1), ymax=input_box(default=1),
      start_x=input_box(default=0.5), start_y=input_box(default=0.5),
      step_size=(0.01,(0.001, 0.2)), steps=(600,(0, 1400)) ):
    ff = fast_float(f, 'x', 'y')
    gg = fast_float(g, 'x', 'y')
    steps = int(steps)

    points = [ (start_x, start_y) ]
    for i in range(steps):
        xx, yy = points[-1]
        try:
            points.append( (xx + step_size * ff(xx,yy), yy + step_size * gg(xx,yy)) )
        except (ValueError, ArithmeticError, TypeError):
            break

    starting_point = point(points[0], pointsize=50)
    solution = line(points)
    vector_field = plot_vector_field( (f,g), (x,xmin,xmax), (y,ymin,ymax) )

    result = vector_field + starting_point + solution

    html(r"$\displaystyle\frac{dx}{dt} = %s$  $ \displaystyle\frac{dy}{dt} = %s$" % (latex(f),latex(g)))
    result.show(xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax)

euler.png

Vector Field with Runga-Kutta-Fehlberg

by Harald Schilly

# Solve ODEs using sophisticated Methods like Runga-Kutta-Fehlberg
# by Harald Schilly, April 2008
# (jacobian doesn't work, please fix ...)
var('x y')
@interact
def _(fin = input_box(default=y+exp(x/10)-1/3*((x-1/2)^2+y^3)*x-x*y^3), gin=input_box(default=x^3-x+1/100*exp(y*x^2+x*y^2)-0.7*x),
      xmin=input_box(default=-1), xmax=input_box(default=1.8),
      ymin=input_box(default=-1.3), ymax=input_box(default=1.5),
      x_start=(-1,(-2,2)), y_start=(0,(-2,2)), error=(0.5,(0,1)),
      t_length=(23,(0, 100)) , num_of_points = (1500,(5,2000)),
      algorithm = selector([
         ("rkf45" , "runga-kutta-felhberg (4,5)"),
         ("rk2" , "embedded runga-kutta (2,3)"),
         ("rk4" , "4th order classical runga-kutta"),
         ("rk8pd" , 'runga-kutta prince-dormand (8,9)'),
         ("rk2imp" , "implicit 2nd order runga-kutta at gaussian points"),
         ("rk4imp" , "implicit 4th order runga-kutta at gaussian points"),
         ("bsimp" , "implicit burlisch-stoer (requires jacobian)"),
         ("gear1" , "M=1 implicit gear"),
         ("gear2" , "M=2 implicit gear")
      ])):
    f(x,y)=fin
    g(x,y)=gin

    ff = f._fast_float_(*f.args())
    gg = g._fast_float_(*g.args())

    #solve
    path = []
    err = error
    xerr = 0
    for yerr in [-err, 0, +err]:
      T=ode_solver()
      T.algorithm=algorithm
      T.function = lambda t, yp: [ff(yp[0],yp[1]), gg(yp[0],yp[1])]
      T.jacobian = lambda t, yp: [[diff(fun,dval)(yp[0],yp[1]) for dval in [x,y]] for fun in [f,g]]
      T.ode_solve(y_0=[x_start + xerr, y_start + yerr],t_span=[0,t_length],num_points=num_of_points)
      path.append(line([p[1] for p in T.solution]))

    #plot
    vector_field = plot_vector_field( (f,g), (x,xmin,xmax), (y,ymin,ymax) )
    starting_point = point([x_start, y_start], pointsize=50)
    show(vector_field + starting_point + sum(path), aspect_ratio=1, figsize=[8,9])

ode_runga_kutta.png

Mass/Spring systems

by Jason Grout

These two interacts involve some Cython code or other scipy imports, so I've posted a file containing them. You can download the worksheet or copy it online.

Heat equation using Fourier series

by Pablo Angulo

var('x')
x0  = 0
k=1
f   = x*exp(-x^2)
p   = plot(f,0,2*pi, thickness=2)
c   = 1/pi
orden=10
alpha=[(n,c*numerical_integral(f(x)*sin(x*n/2),0,2*pi)[0] ) for n in range(1,orden)]

@interact
def _(tiempo = (0.1*j for j in (0..10)) ):
    ft = sum( a*sin(x*n/2)*exp(-k*(n/2)^2*tiempo) for n,a in alpha)
    pt = plot(ft, 0, 2*pi, color='green', thickness=2)
    show( p + pt, ymin = -.2)

heat_fourier.png

Heat equation using finite diferences in cython (very fast!)

by Pablo Angulo

%cython
#cython code implementing a very simple finite diference scheme
import numpy as np
def calor_cython(u0,float dx, float k,float t_f,int tsteps):
    cdef int m
    cdef float dt
    cdef float s
    u=np.array(u0)
    dt=t_f/tsteps
    s=k*dt/(dx**2)        #we cannot use ^ for exponentiation in cython
    for m in range(tsteps):
        u[1:-1]=(1-2*s)*u[1:-1]+s*u[0:-2]+s*u[2:]
    return u

#interact box wrapping the code above
var('x')

@interact
def _(f=input_box(default=x*exp(-x^2)), longitud=input_box(default=2*pi),
      tiempo=input_box(default=0.1), M=input_box(default=100),
      k=input_box(default=1), tsteps=input_box(default=2000) ):
    efe=f._fast_float_()
    dx=float(longitud/M)
    xs=[n*dx for n in range(M+1)]
    u0=[efe(a) for a in xs]

    s=k*(tiempo/tsteps) /dx^2
    if s>0.5:
        print 's=%f > 1/2!!!  The method is not stable'%s

    ut=calor_cython(u0,dx,k,tiempo,tsteps)
    show( line2d(zip(xs, u0)) + line2d(zip(xs, ut), rgbcolor='green') )

heat_findif.png

interact/diffeq (last edited 2020-02-08 13:22:36 by chapoton)