Processing Math: Done
No jsMath TeX fonts found -- using unicode fonts instead.
This may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 6 and 7
Revision 6 as of 2009-03-12 13:59:55
Size: 7466
Editor: pang
Comment: added figures
Revision 7 as of 2009-03-12 14:05:00
Size: 7528
Editor: pang
Comment: translated a couple of sentences into english, but left names like tiempo to keep the builtin time alone
Deletions are marked like this. Additions are marked like this.
Line 155: Line 155:
def _(tiempo=(0.1*j for j in (0..10))):
    ft=sum(a*sin(x*n/2)*exp(-k*(n/2)^2*tiempo) for n,a in alpha)
    pt = plot(ft,0, 2*pi, color='green', thickness=2)
    show(p + pt, ymin = -.2)
def _(tiempo = (0.1*j for j in (0..10)) ):
    ft = sum( a*sin(x*n/2)*exp(-k*(n/2)^2*tiempo) for n,a in alpha)
    pt = plot(ft, 0, 2*pi, color='green', thickness=2)
    show( p + pt, ymin = -.2)
Line 167: Line 167:
#cython code implementing a very simple finite diference scheme
Line 174: Line 175:
    s=k*dt/(dx**2) #tenemos que sustituir ^ por ** para exponenciar     s=k*dt/(dx**2) #we cannot use ^ for exponentiation in cython
Line 181: Line 182:
#Versión interactiva usando el código cython #interact box wrapping the code above
Line 195: Line 196:
        print 's=%f > 1/2!!! El metodo no es estable'%s         print 's=%f > 1/2!!! The method is not stable'%s

Sage Interactions - Differential Equations

goto interact main page

Euler's Method in one variable

by Marshall Hampton. This needs some polishing but its usable as is.

def tab_list(y, headers = None):
    '''
    Converts a list into an html table with borders.
    '''
    s = '<table border = 1>'
    if headers:
        for q in headers:
            s = s + '<th>' + str(q) + '</th>'
    for x in y:
        s = s + '<tr>'
        for q in x:
            s = s + '<td>' + str(q) + '</td>'
        s = s + '</tr>'
    s = s + '</table>'
    return s
var('x y')
@interact
def euler_method(y_exact_in = input_box('-cos(x)+1.0', type = str, label = 'Exact solution = '), y_prime_in = input_box('sin(x)', type = str, label = "y' = "), start = input_box(0.0, label = 'x starting value: '), stop = input_box(6.0, label = 'x stopping value: '), startval = input_box(0.0, label = 'y starting value: '), nsteps = slider([2^m for m in range(0,10)], default = 10, label = 'Number of steps: '), show_steps = slider([2^m for m in range(0,10)], default = 8, label = 'Number of steps shown in table: ')):
    y_exact = lambda x: eval(y_exact_in)
    y_prime = lambda x,y: eval(y_prime_in)
    stepsize = float((stop-start)/nsteps)
    steps_shown = max(nsteps,show_steps)
    sol = [startval]
    xvals = [start]
    for step in range(nsteps):
        sol.append(sol[-1] + stepsize*y_prime(xvals[-1],sol[-1]))
        xvals.append(xvals[-1] + stepsize)
    sol_max = max(sol + [find_maximum_on_interval(y_exact,start,stop)[0]])
    sol_min = min(sol + [find_minimum_on_interval(y_exact,start,stop)[0]])
    show(plot(y_exact(x),start,stop,rgbcolor=(1,0,0))+line([[xvals[index],sol[index]] for index in range(len(sol))]),xmin=start,xmax = stop, ymax = sol_max, ymin = sol_min)    
    if nsteps < steps_shown:
        table_range = range(len(sol))
    else:
        table_range = range(0,floor(steps_shown/2)) + range(len(sol)-floor(steps_shown/2),len(sol))
    html(tab_list([[i,xvals[i],sol[i]] for i in table_range], headers = ['step','x','y']))

eulermethod.png

Vector Fields and Euler's Method

by Mike Hansen (tested and updated by William Stein)

x,y = var('x,y')
@interact
def _(f = input_box(default=y), g=input_box(default=-x*y+x^3-x), 
      xmin=input_box(default=-1), xmax=input_box(default=1), 
      ymin=input_box(default=-1), ymax=input_box(default=1), 
      start_x=input_box(default=0.5), start_y=input_box(default=0.5),  
      step_size=(0.01,(0.001, 0.2)), steps=(600,(0, 1400)) ):
    old_f = f
    f = f.function(x,y)
    old_g = g
    g = g.function(x,y)
    steps = int(steps)

    points = [ (start_x, start_y) ]
    for i in range(steps):
        xx, yy = points[-1]
        try:
            points.append( (xx+step_size*f(xx,yy), yy+step_size*g(xx,yy)) )
        except (ValueError, ArithmeticError, TypeError):
            break

    starting_point = point(points[0], pointsize=50)
    solution = line(points)
    vector_field = plot_vector_field( (f,g), (x,xmin,xmax), (y,ymin,ymax) )

    result = vector_field + starting_point + solution
    
    html(r"<h2>$ \frac{dx}{dt} = %s$  $ \frac{dy}{dt} = %s$</h2>"%(latex(old_f),latex(old_g)))
    print "Step size: %s"%step_size
    print "Steps: %s"%steps
    result.show(xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax)

euler.png

Vector Field with Runga-Kutta-Fehlberg

by Harald Schilly

# Solve ODEs using sophisticated Methods like Runga-Kutta-Fehlberg
# by Harald Schilly, April 2008
# (jacobian doesn't work, please fix ...)
var('x y')
@interact
def _(fin = input_box(default=y+exp(x/10)-1/3*((x-1/2)^2+y^3)*x-x*y^3), gin=input_box(default=x^3-x+1/100*exp(y*x^2+x*y^2)-0.7*x), 
      xmin=input_box(default=-1), xmax=input_box(default=1.8), 
      ymin=input_box(default=-1.3), ymax=input_box(default=1.5), 
      x_start=(-1,(-2,2)), y_start=(0,(-2,2)), error=(0.5,(0,1)), 
      t_length=(23,(0, 100)) , num_of_points = (1500,(5,2000)),
      algorithm = selector([
         ("rkf45" , "runga-kutta-felhberg (4,5)"),
         ("rk2" , "embedded runga-kutta (2,3)"),
         ("rk4" , "4th order classical runga-kutta"),
         ("rk8pd" , 'runga-kutta prince-dormand (8,9)'),
         ("rk2imp" , "implicit 2nd order runga-kutta at gaussian points"),
         ("rk4imp" , "implicit 4th order runga-kutta at gaussian points"),
         ("bsimp" , "implicit burlisch-stoer (requires jacobian)"),
         ("gear1" , "M=1 implicit gear"),
         ("gear2" , "M=2 implicit gear")
      ])):
    f(x,y)=fin
    g(x,y)=gin    
    
    ff = f._fast_float_(*f.args())
    gg = g._fast_float_(*g.args())
    
    #solve
    path = []      
    err = error
    xerr = 0
    for yerr in [-err, 0, +err]:
      T=ode_solver()
      T.algorithm=algorithm
      T.function = lambda t, yp: [ff(yp[0],yp[1]), gg(yp[0],yp[1])]  
      T.jacobian = lambda t, yp: [[diff(fun,dval)(yp[0],yp[1]) for dval in [x,y]] for fun in [f,g]]
      T.ode_solve(y_0=[x_start + xerr, y_start + yerr],t_span=[0,t_length],num_points=num_of_points)
      path.append(line([p[1] for p in T.solution]))

    #plot
    vector_field = plot_vector_field( (f,g), (x,xmin,xmax), (y,ymin,ymax) )
    starting_point = point([x_start, y_start], pointsize=50)
    show(vector_field + starting_point + sum(path), aspect_ratio=1, figsize=[8,9])

ode_runga_kutta.png

Mass/Spring systems

by Jason Grout

These two interacts involve some Cython code or other scipy imports, so I've posted a file containing them. You can download the worksheet or copy it online.

Heat equation using Fourier series

by Pablo Angulo

var('x')
x0  = 0
k=1
f   = x*exp(-x^2)
p   = plot(f,0,2*pi, thickness=2)
c   = 1/pi
orden=10
alpha=[(n,c*numerical_integral(f(x)*sin(x*n/2),0,2*pi)[0] ) for n in range(1,orden)]

@interact
def _(tiempo = (0.1*j for j in (0..10)) ):
    ft = sum( a*sin(x*n/2)*exp(-k*(n/2)^2*tiempo) for n,a in alpha)
    pt = plot(ft, 0, 2*pi, color='green', thickness=2)
    show( p + pt, ymin = -.2)

heat_fourier.png

Heat equation using finite diferences in cython (very fast!)

by Pablo Angulo

%cython
#cython code implementing a very simple finite diference scheme
import numpy as np
def calor_cython(u0,float dx, float k,float t_f,int tsteps):
    cdef int m
    cdef float dt
    cdef float s
    u=np.array(u0)
    dt=t_f/tsteps
    s=k*dt/(dx**2)        #we cannot use ^ for exponentiation in cython
    for m in range(tsteps):
        u[1:-1]=(1-2*s)*u[1:-1]+s*u[0:-2]+s*u[2:]
    return u

#interact box wrapping the code above
var('x')

@interact
def _(f=input_box(default=x*exp(-x^2)), longitud=input_box(default=2*pi),
      tiempo=input_box(default=0.1), M=input_box(default=100),
      k=input_box(default=1), tsteps=input_box(default=2000) ):
    efe=f._fast_float_()
    dx=float(longitud/M)
    xs=[n*dx for n in range(M+1)]
    u0=[efe(a) for a in xs]
    
    s=k*(tiempo/tsteps) /dx^2
    if s>0.5:
        print 's=%f > 1/2!!!  The method is not stable'%s
    
    ut=calor_cython(u0,dx,k,tiempo,tsteps)
    show( line2d(zip(xs, u0)) + line2d(zip(xs, ut), rgbcolor='green') )

heat_findif.png

interact/diffeq (last edited 2020-02-08 13:22:36 by chapoton)