Sage Interactions - Loop Quantum Gravity
goto interact main page
Quantum tetrahedron volume eigenvalues
by David Horgan.
Given the values of J1, J2, J3 and J4 this interact calculates the volume eigenvalues of a quantum tetrahedron.
xxxxxxxxxx
html('<h3>Quantum tetrahedron Volume Eigenvalue</h3>')
html('Enter the four J values into the input boxes')
html('k values k ranges from kmin to kmax in integer steps')
html('The dimension d of the Hilbert space H4, d = kmax - kmin + 1')
html('kmin = max(|j1-j2|,|j3 -j4|) kmax = min(j1+j2,j3 +j4)')
html('The the dimension of the hilbert space is given by d = kmax -kmin + 1')
html('V^2 =M = 2/9(real antisymmetrix matrix))')
html('Spins must satisfy (j1+j2)<= (j3+j4)')
html('Reference: Bohr-Sommerfeld Quantization of Space by Eugenio Bianchi and Hal M. Haggard ')
import numpy
def _(j1 = input_box(6.0, 'J1'),
j2= input_box(6.0, 'J2'),
j3= input_box(6.0, 'J3'),
j4= input_box(7.0, 'J1'), auto_update=False):
if (j1+j2)<= (j3+j4):
html('<h3>Values of Volume Eigenvalue</h3>')
kmin = int(max(abs(j1-j2),abs(j3 -j4)))
kmax = int(min((j1+j2),(j3 +j4)))
d = kmax -kmin + 1
y=numpy.arange(kmin,kmax+1,1)
kmatrix = matrix(CDF,int(d), int(d))
r=list()
for j in range(d):
k=int(y[j])
c1 = -i*k
c2 = sqrt(4*k*k - 1)
c3 = sqrt(j1*(j1+1))
c4 = sqrt((2*j1+1))
c5 = sqrt(j3*(j3+1))
c6 = sqrt((2*j3+1))
c7 = wigner_6j(j1,1,j1,k,j2,k-1)
c8 = wigner_6j(j3,1,j3,k,j4,k-1)
a = c1*c2*c3*c4*c5*c6*c7*c8
r.append(a)
q=numerical_approx(a, digits=10)
#print r
for j in range(d-1):
kmatrix[[j],[j+1]]=r[j+1]
kmatrix[[j+1],[j]]=-r[j+1]
#print kmatrix
M = (2/9)*kmatrix
#print M
s=M.eigenvalues()
#print s
for j in range(d):
e= sqrt(s[j])
if e.imag() ==0:
print (e)