Sage Interactions - Loop Quantum Gravity
goto interact main page
Contents
Quantum tetrahedron volume and angle eigenvalues
by David Horgan.
Given the values of J1, J2, J3 and J4 this interact calculates the volume and angle eigenvalues of a quantum tetrahedron.
xxxxxxxxxx
html('<h3>Quantum tetrahedron Volume and Angle Eigenvalues</h3>')
html('Enter the four J values into the input boxes')
html('k values k ranges from kmin to kmax in integer steps')
html('The dimension d of the Hilbert space H4, d = kmax - kmin + 1')
html('kmin = max(|j1-j2|,|j3 -j4|) kmax = min(j1+j2,j3 +j4)')
html('The the dimension of the hilbert space is given by d = kmax -kmin + 1')
html('V^2 =M = 2/9(real antisymmetrix matrix))')
html('Spins must satisfy (j1+j2)<= (j3+j4)')
html('Reference: Bohr-Sommerfeld Quantization of Space by Eugenio Bianchi and Hal M. Haggard ')
html('Reference: Shape in an atom of space: exploring quantum geometry phenomenology by Seth A. Major ')
import numpy
def _(j1 = input_box(6.0, 'J1'),
j2= input_box(6.0, 'J2'),
j3= input_box(6.0, 'J3'),
j4= input_box(7.0, 'J1'), auto_update=False):
if (j1+j2)<= (j3+j4):
html('<h3>Value of Angle eigenvalue in radians</h3>')
d2=j3*(j3+1)
d3=j1*(j1+1)
d4=j2*(j2+1)
d5=d2-d3-d4
d6=2*sqrt(d3*d4)
d7=d5/d6
d8=arccos(d7)
print "Angle eigenvalue in radians=",(d8)
html('<h3>Values of Volume Eigenvalue</h3>')
kmin = int(max(abs(j1-j2),abs(j3 -j4)))
kmax = int(min((j1+j2),(j3 +j4)))
d = kmax -kmin + 1
y=numpy.arange(kmin,kmax+1,1)
kmatrix = matrix(CDF,int(d), int(d))
r=list()
for j in range(d):
k=int(y[j])
c1 = -i*k
c2 = sqrt(4*k*k - 1)
c3 = sqrt(j1*(j1+1))
c4 = sqrt((2*j1+1))
c5 = sqrt(j3*(j3+1))
c6 = sqrt((2*j3+1))
c7 = wigner_6j(j1,1,j1,k,j2,k-1)
c8 = wigner_6j(j3,1,j3,k,j4,k-1)
a = c1*c2*c3*c4*c5*c6*c7*c8
r.append(a)
q=numerical_approx(a, digits=10)
#print r
for j in range(d-1):
kmatrix[[j],[j+1]]=r[j+1]
kmatrix[[j+1],[j]]=-r[j+1]
#print kmatrix
M = (2/9)*kmatrix
#print M
s=M.eigenvalues()
#print s
lp3=6*10^-104
for j in range(d):
e= sqrt(s[j])
vol = lp3*e
volume = numerical_approx(vol, digits=2)
if e.imag() ==0:
print "volume eigenvalue =",(e)
print "volume of tetrahedron in m3 =", volume
Quantum tetrahedron Area Operator eigenvalues
by David Horgan.
Given the values of J1, J2, J3 and J4 this interact calculates the volume and angle eigenvalues of a quantum tetrahedron.
xxxxxxxxxx
html('<h3>Quantum tetrahedron Volume and Angle Eigenvalues</h3>')
html('Enter the four J values into the input boxes')
html('k values k ranges from kmin to kmax in integer steps')
html('The dimension d of the Hilbert space H4, d = kmax - kmin + 1')
html('kmin = max(|j1-j2|,|j3 -j4|) kmax = min(j1+j2,j3 +j4)')
html('The the dimension of the hilbert space is given by d = kmax -kmin + 1')
html('V^2 =M = 2/9(real antisymmetrix matrix))')
html('Spins must satisfy (j1+j2)<= (j3+j4)')
html('Reference: Bohr-Sommerfeld Quantization of Space by Eugenio Bianchi and Hal M. Haggard ')
html('Reference: Shape in an atom of space: exploring quantum geometry phenomenology by Seth A. Major ')
import numpy
def _(j1 = input_box(6.0, 'J1'),
j2= input_box(6.0, 'J2'),
j3= input_box(6.0, 'J3'),
j4= input_box(7.0, 'J1'), auto_update=False):
if (j1+j2)<= (j3+j4):
html('<h3>Value of Angle eigenvalue in radians</h3>')
d2=j3*(j3+1)
d3=j1*(j1+1)
d4=j2*(j2+1)
d5=d2-d3-d4
d6=2*sqrt(d3*d4)
d7=d5/d6
d8=arccos(d7)
print "Angle eigenvalue in radians=",(d8)
html('<h3>Values of Volume Eigenvalue</h3>')
kmin = int(max(abs(j1-j2),abs(j3 -j4)))
kmax = int(min((j1+j2),(j3 +j4)))
d = kmax -kmin + 1
y=numpy.arange(kmin,kmax+1,1)
kmatrix = matrix(CDF,int(d), int(d))
r=list()
for j in range(d):
k=int(y[j])
c1 = -i*k
c2 = sqrt(4*k*k - 1)
c3 = sqrt(j1*(j1+1))
c4 = sqrt((2*j1+1))
c5 = sqrt(j3*(j3+1))
c6 = sqrt((2*j3+1))
c7 = wigner_6j(j1,1,j1,k,j2,k-1)
c8 = wigner_6j(j3,1,j3,k,j4,k-1)
a = c1*c2*c3*c4*c5*c6*c7*c8
r.append(a)
q=numerical_approx(a, digits=10)
#print r
for j in range(d-1):
kmatrix[[j],[j+1]]=r[j+1]
kmatrix[[j+1],[j]]=-r[j+1]
#print kmatrix
M = (2/9)*kmatrix
#print M
s=M.eigenvalues()
#print s
lp3=6*10^-104
for j in range(d):
e= sqrt(s[j])
vol = lp3*e
volume = numerical_approx(vol, digits=2)
if e.imag() ==0:
print "volume eigenvalue =",(e)
print "volume of tetrahedron in m3 =", volume