Size: 2449
Comment:
|
Size: 2879
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 8: | Line 8: |
== Quantum tetrahedron volume eigenvalues == | == Quantum tetrahedron volume and angle eigenvalues == |
Line 11: | Line 11: |
Given the values of J1, J2, J3 and J4 this interact calculates the volume eigenvalues of a quantum tetrahedron. | Given the values of J1, J2, J3 and J4 this interact calculates the volume and angle eigenvalues of a quantum tetrahedron. |
Line 15: | Line 15: |
html('<h3>Quantum tetrahedron Volume Eigenvalue</h3>') | html('<h3>Quantum tetrahedron Volume and Angle Eigenvalues</h3>') |
Line 24: | Line 24: |
html('Reference: Shape in an atom of space: exploring quantum geometry phenomenology by Seth A. Major ') | |
Line 44: | Line 45: |
html('<h3>Value of Angle eigenvalue in radians</h3>' d2=j3*(j3+1) d3=j1*(j1+1) d4=j2*(j2+1) d5=d2-d3-d4 d6=2*sqrt(d3*d4) d7=d5/d6 d8=arccos(d7) print d8 print "Angle eigenvalue in radians=",(d8) |
|
Line 81: | Line 93: |
print "volume of tetrahedron =", volume | print "volume of tetrahedron in m3 =", volume |
Sage Interactions - Loop Quantum Gravity
goto interact main page
Quantum tetrahedron volume and angle eigenvalues
by David Horgan.
Given the values of J1, J2, J3 and J4 this interact calculates the volume and angle eigenvalues of a quantum tetrahedron.
xxxxxxxxxx
html('<h3>Quantum tetrahedron Volume and Angle Eigenvalues</h3>')
html('Enter the four J values into the input boxes')
html('k values k ranges from kmin to kmax in integer steps')
html('The dimension d of the Hilbert space H4, d = kmax - kmin + 1')
html('kmin = max(|j1-j2|,|j3 -j4|) kmax = min(j1+j2,j3 +j4)')
html('The the dimension of the hilbert space is given by d = kmax -kmin + 1')
html('V^2 =M = 2/9(real antisymmetrix matrix))')
html('Spins must satisfy (j1+j2)<= (j3+j4)')
html('Reference: Bohr-Sommerfeld Quantization of Space by Eugenio Bianchi and Hal M. Haggard ')
html('Reference: Shape in an atom of space: exploring quantum geometry phenomenology by Seth A. Major ')
import numpy
def _(j1 = input_box(6.0, 'J1'),
j2= input_box(6.0, 'J2'),
j3= input_box(6.0, 'J3'),
j4= input_box(7.0, 'J1'), auto_update=False):
if (j1+j2)<= (j3+j4):
html('<h3>Value of Angle eigenvalue in radians</h3>'
d2=j3*(j3+1)
d3=j1*(j1+1)
d4=j2*(j2+1)
d5=d2-d3-d4
d6=2*sqrt(d3*d4)
d7=d5/d6
d8=arccos(d7)
print d8
print "Angle eigenvalue in radians=",(d8)
html('<h3>Values of Volume Eigenvalue</h3>')
kmin = int(max(abs(j1-j2),abs(j3 -j4)))
kmax = int(min((j1+j2),(j3 +j4)))
d = kmax -kmin + 1
y=numpy.arange(kmin,kmax+1,1)
kmatrix = matrix(CDF,int(d), int(d))
r=list()
for j in range(d):
k=int(y[j])
c1 = -i*k
c2 = sqrt(4*k*k - 1)
c3 = sqrt(j1*(j1+1))
c4 = sqrt((2*j1+1))
c5 = sqrt(j3*(j3+1))
c6 = sqrt((2*j3+1))
c7 = wigner_6j(j1,1,j1,k,j2,k-1)
c8 = wigner_6j(j3,1,j3,k,j4,k-1)
a = c1*c2*c3*c4*c5*c6*c7*c8
r.append(a)
q=numerical_approx(a, digits=10)
#print r
for j in range(d-1):
kmatrix[[j],[j+1]]=r[j+1]
kmatrix[[j+1],[j]]=-r[j+1]
#print kmatrix
M = (2/9)*kmatrix
#print M
s=M.eigenvalues()
#print s
lp3=6*10^-104
for j in range(d):
e= sqrt(s[j])
vol = lp3*e
volume = numerical_approx(vol, digits=2)
if e.imag() ==0:
print "volume eigenvalue =",(e)
print "volume of tetrahedron in m3 =", volume