Size: 6729
Comment:
|
Size: 6765
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 71: | Line 71: |
print 'angle between faces 1 and 2 in quantum tetrahedron = ',d8a, 'radians' print 'angle between faces 1 and 2 in quantum tetrahedron = ',angle,'degrees' |
if angle != NaN: print 'angle between faces 1 and 2 in quantum tetrahedron = ',d8a, 'radians' print 'angle between faces 1 and 2 in quantum tetrahedron = ',angle,'degrees' |
Sage Interactions - Loop Quantum Gravity
goto interact main page
Contents
Quantum tetrahedron volume, area and angle eigenvalues
by David Horgan.
In this interact I calculate the angle, area and volume for a quantum tetrahedron The angle is found using the expression: theta = arccos((j3*(j3+1)-(j1*(j1+j1)-j2*(j2+1))/(2*sqrt(j1*(j1+j1)*j2*(j2+1)))) The area is found using the expression: A=sqrt(j1*(j1+1)) The volume is fund using the expression V^2 =M = 2/9(real antisymmetrix matrix)
Values of constants gamma is Immirzi parameter gamma =numerical_approx( ln(2)/(pi*sqrt(2))) #G = 6.63*10^-11 hbar= (1.61619926*10^-35)/(2*pi) lp is the planck length lp3=6*10^-104 Reference: Bohr-Sommerfeld Quantization of Space by Eugenio Bianchi and Hal M. Haggard. Reference: Shape in an atom of space: exploring quantum geometry phenomenology by Seth A. Major.
Research Blog: http://quantumtetrahedron.wordpress.com
Given the values of J1, J2, J3 and J4 this interact calculates the volume, area and angle eigenvalues of a quantum tetrahedron.
xxxxxxxxxx
import numpy
def _(j1 = input_box(6.0, 'J1'),
j2= input_box(6.0, 'J2'),
j3= input_box(6.0, 'J3'),
j4= input_box(7.0, 'J1'), auto_update=False):
if (j1+j2)<= (j3+j4):
html('<h3>Value of Angle eigenvalue in radians</h3>')
d2=j3*(j3+1)
d3=j1*(j1+1)
d4=j2*(j2+1)
d5=d2-d3-d4
d6=2*sqrt(d3*d4)
d7=d5/d6
d8=arccos(d7)
d8a=numerical_approx(d8, digits=4)
angle = numerical_approx(d8*180/pi, digits=4)
if angle != NaN:
print 'angle between faces 1 and 2 in quantum tetrahedron = ',d8a, 'radians'
print 'angle between faces 1 and 2 in quantum tetrahedron = ',angle,'degrees'
html('<h3>main sequence Area eigenvalues</h3>')
lp=1.61619926*10^-35
main1=numerical_approx(sqrt(j1*(j1+1)),digits=4)
areamain1 =0.5*lp^2*main1
print 'Area of face 1=', areamain1, 'm2'
main2=numerical_approx(sqrt(j2*(j2+1)),digits=4)
areamain2 =0.5*lp^2*main2
print 'Area of face 2=', areamain2, 'm2'
main3=numerical_approx(sqrt(j3*(j3+1)),digits=4)
areamain3 =0.5*lp^2*main3
print 'Area of face 3=', areamain3, 'm2'
main4=numerical_approx(sqrt(j4*(j4+1)),digits=4)
areamain4 =0.5*lp^2*main4
print 'Area of face 4=', areamain4, 'm2'
area = areamain1 + areamain3 +areamain3+areamain4
print 'Total area of quantum tetrahedron =', area, 'm2'
html('<h3>Values of Volume Eigenvalue</h3>')
kmin = int(max(abs(j1-j2),abs(j3 -j4)))
kmax = int(min((j1+j2),(j3 +j4)))
d = kmax -kmin + 1
y=numpy.arange(kmin,kmax+1,1)
kmatrix = matrix(CDF,int(d), int(d))
r=list()
for j in range(d):
k=int(y[j])
c1 = -i*k
c2 = sqrt(4*k*k - 1)
c3 = sqrt(j1*(j1+1))
c4 = sqrt((2*j1+1))
c5 = sqrt(j3*(j3+1))
c6 = sqrt((2*j3+1))
c7 = wigner_6j(j1,1,j1,k,j2,k-1)
c8 = wigner_6j(j3,1,j3,k,j4,k-1)
a = c1*c2*c3*c4*c5*c6*c7*c8
r.append(a)
q=numerical_approx(a, digits=10)
#print r
for j in range(d-1):
kmatrix[[j],[j+1]]=r[j+1]
kmatrix[[j+1],[j]]=-r[j+1]
#print kmatrix
M = (2/9)*kmatrix
#print M
s=M.eigenvalues()
#print s
lp3=6*10^-104
for j in range(d):
e= sqrt(s[j])
vol = lp3*e
volume = numerical_approx(vol, digits=2)
if e.imag() ==0:
print "volume eigenvalue =",(e)
print "volume of tetrahedron =", volume, 'm3'
Quantum tetrahedron Area Operator eigenvalues
by David Horgan.
Given the values of J1, J2, J3 and J4 this interact calculates the area eigenvalues of a quantum tetrahedron.
xxxxxxxxxx
html('<h3>Quantum tetrahedron Volume and Angle Eigenvalues</h3>')
html('Enter the four J values into the input boxes')
html('k values k ranges from kmin to kmax in integer steps')
html('The dimension d of the Hilbert space H4, d = kmax - kmin + 1')
html('kmin = max(|j1-j2|,|j3 -j4|) kmax = min(j1+j2,j3 +j4)')
html('The the dimension of the hilbert space is given by d = kmax -kmin + 1')
html('V^2 =M = 2/9(real antisymmetrix matrix))')
html('Spins must satisfy (j1+j2)<= (j3+j4)')
html('Reference: Bohr-Sommerfeld Quantization of Space by Eugenio Bianchi and Hal M. Haggard ')
html('Reference: Shape in an atom of space: exploring quantum geometry phenomenology by Seth A. Major ')
import numpy
def _(j1 = input_box(6.0, 'J1'),
j2= input_box(6.0, 'J2'),
j3= input_box(6.0, 'J3'),
j4= input_box(7.0, 'J1'), auto_update=False):
if (j1+j2)<= (j3+j4):
html('<h3>Value of Angle eigenvalue in radians</h3>')
d2=j3*(j3+1)
d3=j1*(j1+1)
d4=j2*(j2+1)
d5=d2-d3-d4
d6=2*sqrt(d3*d4)
d7=d5/d6
d8=arccos(d7)
print "Angle eigenvalue in radians=",(d8)
html('<h3>Values of Volume Eigenvalue</h3>')
kmin = int(max(abs(j1-j2),abs(j3 -j4)))
kmax = int(min((j1+j2),(j3 +j4)))
d = kmax -kmin + 1
y=numpy.arange(kmin,kmax+1,1)
kmatrix = matrix(CDF,int(d), int(d))
r=list()
for j in range(d):
k=int(y[j])
c1 = -i*k
c2 = sqrt(4*k*k - 1)
c3 = sqrt(j1*(j1+1))
c4 = sqrt((2*j1+1))
c5 = sqrt(j3*(j3+1))
c6 = sqrt((2*j3+1))
c7 = wigner_6j(j1,1,j1,k,j2,k-1)
c8 = wigner_6j(j3,1,j3,k,j4,k-1)
a = c1*c2*c3*c4*c5*c6*c7*c8
r.append(a)
q=numerical_approx(a, digits=10)
#print r
for j in range(d-1):
kmatrix[[j],[j+1]]=r[j+1]
kmatrix[[j+1],[j]]=-r[j+1]
#print kmatrix
M = (2/9)*kmatrix
#print M
s=M.eigenvalues()
#print s
lp3=6*10^-104
for j in range(d):
e= sqrt(s[j])
vol = lp3*e
volume = numerical_approx(vol, digits=2)
if e.imag() ==0:
print "volume eigenvalue =",(e)
print "volume of tetrahedron in m3 =", volume