|
Size: 5591
Comment:
|
Size: 6486
Comment:
|
| Deletions are marked like this. | Additions are marked like this. |
| Line 11: | Line 11: |
| Given the values of J1, J2, J3 and J4 this interact calculates the volume and angle eigenvalues of a quantum tetrahedron. | In this interact I calculate the angle, area and volume for a quantum tetrahedron The angle is found using the expression: theta = arccos((j3*(j3+1)-(j1*(j1+j1)-j2*(j2+1))/(2*sqrt(j1*(j1+j1)*j2*(j2+1)))) The area is found using the expression: A=sqrt(j1*(j1+1)) The volume is fund using the expression V^2 =M = 2/9(real antisymmetrix matrix) Values of constants gamma is Immirzi parameter gamma =numerical_approx( ln(2)/(pi*sqrt(2))) #G = 6.63*10^-11 hbar= (1.61619926*10^-35)/(2*pi) lp is the planck length lp3=6*10^-104 Reference: Bohr-Sommerfeld Quantization of Space by Eugenio Bianchi and Hal M. Haggard. Reference: Shape in an atom of space: exploring quantum geometry phenomenology by Seth A. Major. Research Blog: http://quantumtetrahedron.wordpress.com Given the values of J1, J2, J3 and J4 this interact calculates the volume, area,angle eigenvalues of a quantum tetrahedron. |
| Line 15: | Line 40: |
| html('<h3>Quantum tetrahedron Volume and Angle Eigenvalues</h3>') html('Enter the four J values into the input boxes') html('k values k ranges from kmin to kmax in integer steps') html('The dimension d of the Hilbert space H4, d = kmax - kmin + 1') html('kmin = max(|j1-j2|,|j3 -j4|) kmax = min(j1+j2,j3 +j4)') html('The the dimension of the hilbert space is given by d = kmax -kmin + 1') html('V^2 =M = 2/9(real antisymmetrix matrix))') html('Spins must satisfy (j1+j2)<= (j3+j4)') html('Reference: Bohr-Sommerfeld Quantization of Space by Eugenio Bianchi and Hal M. Haggard ') html('Reference: Shape in an atom of space: exploring quantum geometry phenomenology by Seth A. Major ') |
|
| Line 54: | Line 70: |
| html('<h3>main sequence Area eigenvalues</h3>') lp=1.61619926*10^-35 main1=numerical_approx(sqrt(j1*(j1+1)),digits=4) areamain1 =0.5*lp^2*main1 print 'Area of face 1=', areamain1, 'm2' main2=numerical_approx(sqrt(j2*(j2+1)),digits=4) areamain2 =0.5*lp^2*main2 print 'Area of face 2=', areamain2, 'm2' main3=numerical_approx(sqrt(j3*(j3+1)),digits=4) areamain3 =0.5*lp^2*main3 print 'Area of face 3=', areamain3, 'm2' main4=numerical_approx(sqrt(j4*(j4+1)),digits=4) areamain4 =0.5*lp^2*main4 print 'Area of face 4=', areamain4, 'm2' area = areamain1 + areamain3 +areamain3+areamain4 print 'Total area of quantum tetrahedron =', area, 'm2' |
|
| Line 102: | Line 141: |
| Given the values of J1, J2, J3 and J4 this interact calculates the volume and angle eigenvalues of a quantum tetrahedron. | Given the values of J1, J2, J3 and J4 this interact calculates the area eigenvalues of a quantum tetrahedron. |
Sage Interactions - Loop Quantum Gravity
goto interact main page
Contents
Quantum tetrahedron volume and angle eigenvalues
by David Horgan.
In this interact I calculate the angle, area and volume for a quantum tetrahedron The angle is found using the expression: theta = arccos((j3*(j3+1)-(j1*(j1+j1)-j2*(j2+1))/(2*sqrt(j1*(j1+j1)*j2*(j2+1)))) The area is found using the expression: A=sqrt(j1*(j1+1)) The volume is fund using the expression V^2 =M = 2/9(real antisymmetrix matrix)
Values of constants gamma is Immirzi parameter gamma =numerical_approx( ln(2)/(pi*sqrt(2))) #G = 6.63*10^-11 hbar= (1.61619926*10^-35)/(2*pi) lp is the planck length lp3=6*10^-104 Reference: Bohr-Sommerfeld Quantization of Space by Eugenio Bianchi and Hal M. Haggard. Reference: Shape in an atom of space: exploring quantum geometry phenomenology by Seth A. Major.
Research Blog: http://quantumtetrahedron.wordpress.com
Given the values of J1, J2, J3 and J4 this interact calculates the volume, area,angle eigenvalues of a quantum tetrahedron.
Quantum tetrahedron Area Operator eigenvalues
by David Horgan.
Given the values of J1, J2, J3 and J4 this interact calculates the area eigenvalues of a quantum tetrahedron.
