Discussion of verifying kolyvagin for rank 3 curve 5077a
We have \begin{verbatim} sage: E = EllipticCurve('5077a') sage: for p in prime_range(30): ... print p, gcd(E.ap(p),p+1) 2 1 3 1 5 2 7 4 11 6 13 2 17 2 19 1 23 6 29 6 sage: E.heegner_discriminants_list(10) [-7, -19, -40, -47, -55, -59, -71, -79, -84, -88] sage: for D in E.heegner_discriminants_list(20): ... K.<a> = QuadraticField(D) ... if D%11 and len(K.factor(11)) == 1 and len(K.factor(23)) == 1: ... print D, K.class_number() -47 5 -59 3 -71 7 -104 6 -115 2 sage: K.<a> = QuadraticField(-115) sage: p = 3; c = 11*23 sage: c 253 sage: 12*24*3 864 sage: for p in prime_range(50): ... if len(K.factor(p)) == 1: ... print p, gcd(E.ap(p),p+1) 2 1 3 1 5 2 11 6 13 2 19 1 23 6 47 3 \end{verbatim} Thus if we take $D=-115$, $c=23 \cdot 47$, and $\ell=11$. Then my purported maybe algorithm would compute: $$P_c\pmod{\ell} \in E(\mathbf{F}_{\ell^2})[3].$$ With luck, this will just happen to turn out to be nonzero hence verify Kolyvagin's conjecture provably. If it isn't we can try $\ell=23$ or $\ell=47$ with $c'=11\cdot 23\cdot 47/ \ell$. We would have to do computations in $$ \Div(X_0(5077)_{\F_{11}}^{\ss}) $$ We have \begin{verbatim} sage: dimension_new_cusp_forms(5077*11,2,11) 4233 \end{verbatim} Doing linear algebra on that space over $\F_3$ is completely reasonable. But computing the Kolyvagin point directly over a number field of degree 2162 would be impossibly hard, since the height would be crazy ginormous. Maybe one could get the field down to degree $2\cdot 11\cdot 23 = 506$, but even then the height is likely to make this just impossible. With my new algorithm idea, though, I think it this computation is possible. In fact, maybe it will just be as hard as computing a 1-dimensional eigenspace in characteristic $3$ of a sparse matrix of size $4233$, which is computationally... possible.
This seems very feasible, but requires working with class number > 1, which in theory should be fine.
Here is some more than Jen and I did tonight:
sage: K.<a> = QuadraticField(-7) sage: E = EllipticCurve('5077a') sage: for p in prime_range(400): ... if len(K.factor(p))==1: ... print p, factor(gcd(E.ap(p),p+1)) 3 1 5 2 7 2^2 13 2 17 2 19 1 31 2 41 2 * 3 * 7 47 3 59 1 61 2 73 2 83 2 89 1 97 2 101 2 103 2^3 * 13 131 1 139 2^2 157 2 167 2^3 173 3 181 1 199 1 223 7 227 2 229 2 * 5 241 1 251 2^2 257 2 * 3 269 2 271 2 283 2^2 293 3 307 1 311 2^3 313 2 349 5 * 7 353 2 367 2^4 383 3 397 2 sage: dimension_new_cusp_forms(5077*41,2,41) 16927 sage: dimension_new_cusp_forms(5077*229,2,229) 96481 sage: for D in E.heegner_discriminants_list(20): ... K.<a> = QuadraticField(D) ... if D%11 and len(K.factor(23)) == 1: ... print D, K.class_number() -47 5 -59 3 -71 7 -104 6 -115 2 -127 5 -131 5 -151 7 sage: for D in E.heegner_discriminants_list(20): ... K.<a> = QuadraticField(D) ... if D%11 and len(K.factor(29)) == 1: ... print D, K.class_number() -19 1 -40 2 -47 5 -79 5 -84 4 -104 6 -127 5 -131 5 sage: dimension_new_cusp_forms(5077*29,2,29) 11849 sage: E = EllipticCurve('5077a') sage: for p in prime_range(50): ... print p, gcd(E.ap(p),p+1) 2 1 3 1 5 2 7 4 11 6 13 2 17 2 19 1 23 6 29 6 31 2 37 38 41 42 43 4 47 3