Differences between revisions 12 and 18 (spanning 6 versions)
Revision 12 as of 2014-02-22 16:22:57
Size: 1444
Editor: vdelecroix
Comment:
Revision 18 as of 2014-03-14 10:58:37
Size: 3030
Editor: vdelecroix
Comment:
Deletions are marked like this. Additions are marked like this.
Line 11: Line 11:
   * Thierry

== Review all tickets waiting on trac ==

There are around [[http://trac.sagemath.org/report/75|250 tickets waiting on trac for a reviewer]] ... solution: a ticket a day! (18 dev, 5 days we should get 90 tickets)
Line 22: Line 27:
By language we simply mean a set of finite words (rational language, D0L-system, ...). The scope ranges from combinatorics and algebra to discrete dynamical systems. Sage capabilities is currently restricted to combinatorics on single word and do not focus on structure of certain subset. We aim to implement an abstract and easy to reuse infrastructure for languages.
Line 31: Line 38:

A translation surface is a geometric and dynamical objects that can be defined from gluing polygons by translation. It is interesting from geometric and dynamical point of vue. Many computations are possible !
Line 62: Line 71:

== Refactor continued fractions ==

  * interested
    * Thierry
    * Vincent

  * todo: see http://trac.sagemath.org/ticket/14567

== Dynamical systems simulation (statistics of orbits) ==

  * interested
    * Thierry
    * Sébastien
    * Vincent

== on-line db for Sage worksheets and other ressources ==

  * Thierry
  * Vincent

== Lazy Multivariate Power Series ==

  * Matthieu Dien
  * Vincent

== Real numbers ==

There are many ways to represent real numbers:

 * rational numbers
 * algebraic numbers
 * expansions in a given basis
 * continued fractions (and generalizations)
 * symbolic expressions (involving transcendental functions like cos, exp, pi, ...)
 * ...
But Sage currently has no bridge between them...

Tentative list of themes

A list of topics for Sage days 57. Participants, please edit!

Introduction to git

  • by Volker Braun
  • interested
    • Samuel
    • Eric
    • Thierry

Review all tickets waiting on trac

There are around 250 tickets waiting on trac for a reviewer ... solution: a ticket a day! (18 dev, 5 days we should get 90 tickets)

Coxeter groups

  • interested
    • Jean-Philippe Labbé
    • Nicolas M. Thiéry
    • Vivien Ripoll
    • ...

Languages

By language we simply mean a set of finite words (rational language, D0L-system, ...). The scope ranges from combinatorics and algebra to discrete dynamical systems. Sage capabilities is currently restricted to combinatorics on single word and do not focus on structure of certain subset. We aim to implement an abstract and easy to reuse infrastructure for languages.

  • interested
    • Vincent
    • Thierry
  • todo
    • implement the category of languages (from previous work of Vincent and Stepan, #12224, #12225, #12227)

    • finish the inclusion of subshifts of finite type and work on sofic shifts (#12996)

Translation surfaces

A translation surface is a geometric and dynamical objects that can be defined from gluing polygons by translation. It is interesting from geometric and dynamical point of vue. Many computations are possible !

  • interested
    • Vincent
    • Samuel
    • Thierry
  • todo
    • better datastructure for permutations
    • include Charles Fougeron's code into Sage (computation of Lyapunov exponents, decomposition of the Hodge bundle)
    • datastructure for translation surfaces

Categories

  • interested
    • Nicolas
    • Eric

Polyhedra over number fields

  • interested
    • Volker
    • Vincent

Tensors on free modules

  • interested
    • Eric
  • todo
    • implement tensor products of generic free modules and the associated tensor algebra (by generic it is meant without any privileged basis)

Refactor continued fractions

Dynamical systems simulation (statistics of orbits)

  • interested
    • Thierry
    • Sébastien
    • Vincent

on-line db for Sage worksheets and other ressources

  • Thierry
  • Vincent

Lazy Multivariate Power Series

  • Matthieu Dien
  • Vincent

Real numbers

There are many ways to represent real numbers:

  • rational numbers
  • algebraic numbers
  • expansions in a given basis
  • continued fractions (and generalizations)
  • symbolic expressions (involving transcendental functions like cos, exp, pi, ...)
  • ...

But Sage currently has no bridge between them...

days57-topics (last edited 2014-04-09 19:04:17 by tmonteil)