Size: 2677
Comment: implemented all the new functions for singular cubics from Kate's wishlist
|
Size: 2282
Comment: attached the implementation of the new functions for singular cubics in kate's wishlist
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
BZh91AY&SY¾ý ²·ì@pÿÿþ/è|Kÿÿÿþ` ßh Âh £F ÄiAhɨoÕ@=@ 4 Ì&Ð4a F14F Âh £F ÄiAhÉÌ&Ð4a F14F IDÒbbB½I S1e1?SQì©ê}¢>±_Ýýû¢¯àB«¢H]ä¯m%÷@Ð Oj¼þJö´ÛåÑ¥e¡|eUÀ¢."û+elË;ãfËÛJfʱlZø¦2Ë+Ö×dCKÕmâ*!B¡ª!-"IdJsö»½ÜDõ'Ð"% |
=== Project Leader === |
Line 21: | Line 3: |
bI£Ær']D¦Ö¯ÞÌè#àCqÇ£_y;¤¥%Adì]#&ÑBX6.[59ÎpI DF#K#åÞ#ªmÜÜÞµmß¿:¬IУßIcÊvH²Ìú6måº!»pI? 'áø\ãÀ}â(#sBÜ7Ye·Þ]üú'4ë,êkѲúÖLýümûÈ¡µH,³¡¦Ý|[múrůG!MùdÝ/ÊÆ,øé·)¦4Ã+Þ×¢ød#ex˺!{¾vôæÑ¢Í+sü Ë*÷¼µ9Pªò¼Å' + -1£î¦zýõ}¼ÛF̦,_LZئrÎiL1Jç¦ t9D¡I'&¹î¶Åºï[E*¹büz8Â1-J¦¬æÅUYB:véX¶ ;ÇYa:\6k®ûÖõÜàd¿êP¥2ÏaXÎÞÚ´tD3×9¥úsá£Á³g öÙ·[Ölr¦Yi¸iíjeÖÊÝ )&/·»L¶ÖäÙR\FVaRÔ1¶ø}´É¸Fv¾}¾[kX[(bª5o(Eð#vtÒúôkvyçyôÐ}Àe U"8fò ÅOÎãFeâYÉȦwáÜýÃxØÝdÐ(½ ä"DzQ|%"ø'r:Ì:²÷H#°råÚ5äàuÁ ! Ê( ÖSªÁÞ¤Üu¦¦6 l !7í=ä2"î=Q :Dörý}=Ý®ª% K% øñ ðvwY8=Â,#ät ù|½§ÄG PFK<yä.)8<û½ãÿO=üøCÇ!?ÉÒ))¨ä5CÊjYGÊò¯æ'û"ÈØ¤ yGÒ`É# (q±.o,H`Y C 62E J0±K!tGò;Ñ?£éSè?Óð}ïìÉõ[ÜDÚÙ!?ü]ÉáBBûôzÈ |
Kate === Group Members === Aly, Jenn, Diane, Ekin === Project Description === * [[attachment:KateWishList.sws]] * Wrap E.reduction(prime)(P) so that we can also use P.reduction(prime) [[http://trac.sagemath.org/sage_trac/ticket/11822|#11822]] * Implement E.reduction(p) for E defined over a p-adic fields * This found a bug: [[http://trac.sagemath.org/sage_trac/ticket/11826|#11826]] * See what exactly is going on in E.global_minimal_model(), is it returning the unique restricted model? If so, update documentation * Implement Singular Weierstrass Equations and functionality similar to Elliptic Curves * make E.reduction(bad_prime) able to return this singular cubic object [[http://trac.sagemath.org/sage_trac/ticket/11823|#11823]] * change weierstrass model, addition of points, P.is_singular() to check if point is node/cusp, etc * Compute lots of examples to find guesses for bounds on "C" * p-adic Tate's algorithm * Put Kate's EDS class into sage (document properly)? === Singular Cubics === [[http://trac.sagemath.org/sage_trac/ticket/11823 | Trac ticket 11823 ]] * Functions that seem ok out of the box (so need only documentation adjustment/testing): * a_invariants() etc. (b, c also) * discriminant() * base_ring() * base_field() * is_on_curve() * coordinate_ring() * division_polynomial() * formal_group() * multiplication_by_m()? * Functions that should do something appropriate but don't (need coding): * j_invariant() -- should probably return +infinity? * change_weierstrass_model() -- the new curve needs to pass flag * base_extend() -- the problem may be my patch didn't work * change_ring() -- the problem may be my patch didn't work * cardinality() -- for finite fields * local stuff....?? * addition of points on a curve (seems to work, but needs to avoid singular point) * Functions that we should write (new): [[attachment:singularcurves.sws]] * is_singular() (done) -- this is also accessible as an internal flag: self._is_singular * P.is_singular_point() -- for a point on the curve * singularity_type() -- tells you if it's a node or a cusp * singular_point() -- returns the node or cusp |
Project Leader
Kate
Group Members
Aly, Jenn, Diane, Ekin
Project Description
Wrap E.reduction(prime)(P) so that we can also use P.reduction(prime) #11822
- Implement E.reduction(p) for E defined over a p-adic fields
This found a bug: #11826
- See what exactly is going on in E.global_minimal_model(), is it returning the unique restricted model? If so, update documentation
- Implement Singular Weierstrass Equations and functionality similar to Elliptic Curves
make E.reduction(bad_prime) able to return this singular cubic object #11823
- change weierstrass model, addition of points, P.is_singular() to check if point is node/cusp, etc
- Compute lots of examples to find guesses for bounds on "C"
- p-adic Tate's algorithm
* Put Kate's EDS class into sage (document properly)?
Singular Cubics
* Functions that seem ok out of the box (so need only documentation adjustment/testing):
- a_invariants() etc. (b, c also)
- discriminant()
- base_ring()
- base_field()
- is_on_curve()
- coordinate_ring()
- division_polynomial()
- formal_group()
- multiplication_by_m()?
* Functions that should do something appropriate but don't (need coding):
- j_invariant() -- should probably return +infinity?
- change_weierstrass_model() -- the new curve needs to pass flag
- base_extend() -- the problem may be my patch didn't work
- change_ring() -- the problem may be my patch didn't work
- cardinality() -- for finite fields
- local stuff....??
- addition of points on a curve (seems to work, but needs to avoid singular point)
* Functions that we should write (new):
- is_singular() (done) -- this is also accessible as an internal flag: self._is_singular
- P.is_singular_point() -- for a point on the curve
- singularity_type() -- tells you if it's a node or a cusp
- singular_point() -- returns the node or cusp