Differences between revisions 60 and 88 (spanning 28 versions)
Revision 60 as of 2019-07-10 16:02:17
Size: 5558
Editor: vdelecroix
Comment:
Revision 88 as of 2019-07-19 19:47:11
Size: 8112
Editor: vdelecroix
Comment:
Deletions are marked like this. Additions are marked like this.
Line 27: Line 27:
== Dates == == Links ==
Line 29: Line 29:
 * Begining of the workshop Monday 22nd
    * 9:30 - 10:00 welcome coffee
    * 10:00 - 10:30 A !SageMath panorama (by V. Delecroix)
    * 10:30 - 11:30 Participant presentations and schedule organization
 * [[https://hackmd.io/EvP0nhWsTc-1Ja0BY1wbvw|pad to report bugs / error in a worksheet / general question about SageMath]]
 * [[https://trac.sagemath.org/query?keywords=~days100&col=id&col=summary&col=status&col=type&col=priority&col=milestone&col=component&desc=1&order=status|trac tickets with days100 keyword]]
Line 34: Line 32:
 * Other days
||<#AAAAFF> 9:00 - 10:30 ||<#F0F0AA> 10:30 - 11:00 ||<#AAAAFF> 11:00 - 12:30 ||<#F0F0AA> 12:30 - 14:00 ||<#AAAAFF> 14:00 - 16:00 || <#F0F0AA> 15:30 - 16:00 ||<#AAAAFF> 16:00 - 17:30 || <#AAFFAA> 16:00 - 17:30 ||
||<#AAAAFF> morning session 1 ||<#F0F0AA> coffe break ||<#AAAAFF> morning session 2 ||<#F0F0AA> lunch break ||<#AAAAFF> afternoon session 1 ||<#F0F0AA> coffe break ||<#AAAAFF> afternoon session 2||<#AAFFAA> status report||
== Schedule ==
Line 38: Line 34:
    * morning session 1 9:00 - 10:30
    * coffee break 10:30 - 11:00
    * morning session 2 11:00 - 12:30
    * lunch break 12:30 - 14:00
    * afternoon session 1 14:00 - 15:30
    * coffee break 15:30 - 16:00
    * afternoon session 2 16:00 - 17:30
    * status report: 17:30 - 18:00
Begining of the workshop Monday 22nd
  * 9:30 - 10:00 welcome coffee
  * 10:00 - 10:30 A !SageMath and sage days panorama (by V. Delecroix)
  * 10:30 - 12:30 Participant presentations + schedule organization + get started with Sage
  * lunch and afternoon: as all other days
Line 47: Line 40:
 * End of the workshop: saturday 27th, 14:00 For all other days (Tuesday 22nd afternoon - Friday 26th afternoon)
||<#AADAFF> 9:00 - 10:30 ||<#F0F0AA> 10:30 - 11:00 ||<#FACACA> 11:00 - 12:30 ||<#F0F0AA> 12:30 - 14:00 ||<#DAAAFF> 14:00 - 15:30 ||<#F0F0AA> 15:30 - 16:00 ||<#FACACA> 16:00 - 17:30 ||<#AAFFAA> 17:30 - 18:00 ||
||<#AADAFF> morning session ||<#F0F0AA> coffe break ||<#FACACA> hacking ||<#F0F0AA> lunch break ||<#DAAAFF> afternoon session ||<#F0F0AA> coffe break ||<#FACACA> hacking||<#AAFFAA> status report ||
Line 49: Line 44:
== Broad mathematical thematics == The hacking session are here to let people work on their own projects while having SageMath experts helping/answering. The tutorial sessions will consist of
Line 51: Line 46:
Combinatorics, geometry and dynamics on real surfaces (complex curves). Here is a non-exhaustive list ||<#EEEEEE> Monday ||<#AADAFF> welcome ||<#DAAAFF> get started with SageMath ||
||<#EEEEEE> Tuesday ||<#AADAFF> package presentations ||<#DAAAFF> ? ||
||<#EEEEEE> Wednesday ||<#AADAFF> ? ||<#DAAAFF> (optional) [[https://www.mpim-bonn.mpg.de/de/node/9501|Max-Planck afternoon]] ||
||<#EEEEEE> Thursday ||<#AADAFF> ? ||<#DAAAFF> ? ||
||<#EEEEEE> Friday ||<#AADAFF> ? ||<#DAAAFF> ?||
Line 53: Line 52:
 * moduli space of curves, differentials, spin structures
 * enumerative geometry, integral points in polytopes and (quasi-)modular forms
 * geometry and dynamics of flat and hyperbolic surfaces
 * braid groups, mapping class groups
Remaining tutorial sessions to be organized:
 * git + create a SageMath/Python module + automated testing
 * debugging and profiling
 * SageMath development
 * databases
 * Cython
Line 58: Line 59:
== Relevant Sage packages == == Sage packages ==
Line 73: Line 74:

== Worksheets ==

  * step-by-step programming
    * [[https://wiki.sagemath.org/days100?action=AttachFile&do=get&target=chap1-first_steps.ipynb|chap1-first_steps.ipynb]]
    * [[https://wiki.sagemath.org/days100?action=AttachFile&do=get&target=chap2-list_and_for.ipynb|chap2-list_and_for.ipynb]]
    * [[https://wiki.sagemath.org/days100?action=AttachFile&do=get&target=chap3-if.ipynb|chap3-if.ipynb]]
    * [[https://wiki.sagemath.org/days100?action=AttachFile&do=get&target=chap4-functions.ipynb|chap4-functions.ipynb]]
    * [[https://wiki.sagemath.org/days100?action=AttachFile&do=get&target=chap5-while.ipynb|chap5-while.ipynb]]
    * [[https://wiki.sagemath.org/days100?action=AttachFile&do=get&target=chap6-advanced_exercises.ipynb|chap6-advanced_exercises.ipynb]]
  * [[https://wiki.sagemath.org/days100?action=AttachFile&do=get&target=Computing+modular+group+cohomology.ipynb|Computing modular group cohomology.ipynb]]: Computation of modular cohomology rings of finite groups with Sage
  * [[https://wiki.sagemath.org/days100?action=AttachFile&do=get&target=How_to_implement_new_algebraic_structures.ipynb|How_to_implement_new_algebraic_structures.ipynb]]: A tutorial on parents, elements, categories and coercion

== Euler project challenges ==

  * [organization pad](https://hackmd.io/C11DpDKwTaaB5RkoyuosUw)
Line 91: Line 108:
 * Vanessa Paluch (Bonn)
 * Shreya Kapoor (Bonn)
 * Vanessa Paluch (Bonn University)
 * Shreya Kapoor (Bonn University)
Line 98: Line 115:
 * Hisatoshi Kodani (MPIM, Bonn)
 * [[https://sites.google.com/site/tutamnguyenphan/|Tam Nguyen-Phan]] (MPIM, Bonn)
 * [[http://people.mpim-bonn.mpg.de/stavros/| Stavros Garoufalidis]] (MPIM, Bonn)
 * [[http://cg.cs.uni-bonn.de/de/mitarbeiter/dipl-inform-christoph-lueders/|Christoph Lüders]] (Bonn University)
 * Sophia Krix (Bonn University)

== Broad mathematical thematics ==

Combinatorics, geometry and dynamics on real surfaces (complex curves). Here is a non-exhaustive list

 * moduli space of curves, differentials, spin structures
 * enumerative geometry, integral points in polytopes and (quasi-)modular forms
 * geometry and dynamics of flat and hyperbolic surfaces
 * braid groups, mapping class groups

Following a long tradition of similar workshops, the Sage days 100 workshop will take place in Bonn Germany, July 22nd - July 27th. It welcomes anyone who wishes to work with SageMath, from complete beginners to advanced developers. It will consist of tutorials, participant presentations and mostly free time to let participants work on their mathematical programming projects and get helped from more advanced users. The precise schedule of the workshop will be decided at the begining of the workshop and adapted according to the participant needs.

The afternoon of Wednesday 24th will be dedicated to a SageMath presentation at Max-Planck Institut (for students, PhD students, postdocs and professors). If you wish to be involved in this presentation, contact the organizer.

Practical information

Location

All week

Room 0.016 (ground floor, left of the main entrance)
Institut für Informatik
Endenicher Allee 19A
Bonn

Special Wednesday afternoon event

Lecture Hall (third floor)
Max-Planck Institut
Vivatsgasse 7
Bonn

Schedule

Begining of the workshop Monday 22nd

  • 9:30 - 10:00 welcome coffee
  • 10:00 - 10:30 A SageMath and sage days panorama (by V. Delecroix)

  • 10:30 - 12:30 Participant presentations + schedule organization + get started with Sage
  • lunch and afternoon: as all other days

For all other days (Tuesday 22nd afternoon - Friday 26th afternoon)

9:00 - 10:30

10:30 - 11:00

11:00 - 12:30

12:30 - 14:00

14:00 - 15:30

15:30 - 16:00

16:00 - 17:30

17:30 - 18:00

morning session

coffe break

hacking

lunch break

afternoon session

coffe break

hacking

status report

The hacking session are here to let people work on their own projects while having SageMath experts helping/answering. The tutorial sessions will consist of

Monday

welcome

get started with SageMath

Tuesday

package presentations

?

Wednesday

?

(optional) Max-Planck afternoon

Thursday

?

?

Friday

?

?

Remaining tutorial sessions to be organized:

  • git + create a SageMath/Python module + automated testing
  • debugging and profiling
  • SageMath development

  • databases
  • Cython

Sage packages

  • admcycles: tautological ring on M_{g,n} (Aaron Pixton, Johannes Schmitt, Jason van Zelm)

  • snappy: 3-dim hyperbolic manifolds (Marc Culler, Nathan Dunfield, and Matthias Goerner)

  • veerer: train-tracks and veering triangulations (Vincent Delecroix)

  • surface_dynamics: translation surfaces (Vincent Delecroix)

  • flipper: mapping class group (via flips in triangulation) (Mark Bell)

  • curver: mapping class group (via curve complex) (Mark Bell)

  • sage-train-track: free group automorphisms (Thierry Coulbois)

We will have 20 min presentations of each package emphasizing:

  • What the package is useful for?
  • What should I do if I want to use the package? ie, installation and first steps tutorials
  • What is currently under active development?
  • Wishlist features / possible research experimentations (with the hope that more people get involved)

Worksheets

Euler project challenges

Organization

Participants

Broad mathematical thematics

Combinatorics, geometry and dynamics on real surfaces (complex curves). Here is a non-exhaustive list

  • moduli space of curves, differentials, spin structures
  • enumerative geometry, integral points in polytopes and (quasi-)modular forms
  • geometry and dynamics of flat and hyperbolic surfaces
  • braid groups, mapping class groups

Funding

The workshop is funded by OpenDreamKit align="middle"

With material help from the Laboratoire Bordelais de Recherche en Informatique (France) and the Computer Science Department at Bonn University (Germany).

Organizer

days100 (last edited 2019-09-04 13:12:14 by slelievre)