Integral Calculus
Besides the examples on this page, please see the discussion in BasicCalculus.
Definite and Indefinite Integrals
SAGE can compute both definite integrals like \int_0^1 \frac{dx}{x^3+1} and indefinite integrals such as \int \frac{dx}{x^3+1}:
sage: print integrate(1/(x^3+1),x) 2 x - 1 2 atan(-------) log(x - x + 1) sqrt(3) log(x + 1) - --------------- + ------------- + ---------- 6 sqrt(3) 3 sage: integrate(1/(x^3+1), x, 0, 1) (6*log(2) + sqrt(3)*pi)/18 + sqrt(3)*pi/18
More examples:
sage: integrate(1/x^2, x, 1, infinity) 1 sage: f = x^3 sage: f.integral() x^4/4 sage: integral(x^3,x) x^4/4 sage: f = x*sin(x^2) sage: integral(f,x) -cos(x^2)/2
The Definite Integral
- o The definition of area under curve o Relation between velocity and area o Definition of Integral o The Fundamental Theorem of Calculus
Indefinite Integrals and Change
- o Indefinite Integrals o Physical Intuition
Substitution and Symmetry
- o The Substitution Rule o The Substitution Rule for Definite Integrals o Symmetry
Applications to Areas, Volume, and Averages
Using Integration to Determine Areas Between Curves
Computing Volumes of Surfaces of Revolution
Average Values
Polar coordinates and complex numbers
- o Polar Coordinates o Areas in Polar Coordinates o Complex Numbers o Polar Form o Complex Exponentials and Trig Identities o Trigonometry and Complex Exponentials
Integration Techniques
Integration by parts
Trigonometric integrals
- o Some Remarks on Using Complex-Valued Functions
Trigonometric substitutions
Factoring polynomials
Integration of Rational Functions Using Partial Fractions
Approximating Integrals
Regarding numerical approximation of \int_a^bf(x) dx , where f is a piecewise defined function, Sage can
- compute (for plotting purposes) the piecewise linear function defined by the trapezoid rule for numerical integration based on a subdivision into N subintervals
- the approximation given by the trapezoid rule,
- compute (for plotting purposes) the piecewise constant function defined by the Riemann sums (left-hand, right-hand, or midpoint) in numerical integration based on a subdivision into N subintervals,
- the approximation given by the Riemann sum approximation.
sage: f1 = x^2 sage: f2 = 5-x^2 sage: f = Piecewise([[(0,1),f1],[(1,2),f2]]) sage: f.trapezoid(4) Piecewise defined function with 4 parts, [[(0, 1/2), x/2], [(1/2, 1), 9*(x - 1/2)/2 + 1/4], [(1, 3/2), (x - 1)/2 + 5/2], [(3/2, 2), 11/4 - 7*(x - 3/2)/2]] sage: f.riemann_sum_integral_approximation(6,mode="right") 19/6 sage: f.integral() 3 sage: n(f.integral()) 3.00000000000000
Improper Integrals
- o Convergence, Divergence, and Comparison