List of Computations where Sage is Noticeably Faster than Magma....
A binary of Sage 4.0.1-rc1 is available at /home/wbhart/sage-4.0.1.rc1/sage on eno
A binary of Magma is available in /usr/local/magma-2.15/bin
Machines used
eno: (a script to stop background processes for benchmarking purposes is available at /home/wbhart/script - but please stop it when done)
4-core: model name : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz
Benchmarks
* Computing factorials (Sage is more than twice the speed).
[wbhart@eno sage-4.0.1.rc1]$ ./sage ---------------------------------------------------------------------- | Sage Version 4.0.1.rc1, Release Date: 2009-06-04 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: magma.version() ((2, 15, 8), 'V2.15-8') sage: time n = factorial(10^6) CPU times: user 0.57 s, sys: 0.01 s, total: 0.58 s Wall time: 0.59 s sage: time magma.eval('time n := Factorial(10^6);') CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 1.45 s 'Time: 1.440' sage: time magma.eval('time n := Factorial(10^7);') CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 27.33 s 'Time: 27.300' sage: time n = factorial(10^7) CPU times: user 11.50 s, sys: 0.25 s, total: 11.75 s Wall time: 11.75 s sage: 27.30/11.75 2.32340425531915
* Large degree polynomial multiplication modulo n (Sage is three times as fast).
[wbhart@eno sage-4.0.1.rc1]$ ./sage ---------------------------------------------------------------------- | Sage Version 4.0.1.rc1, Release Date: 2009-06-04 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: magma.version() ((2, 15, 8), 'V2.15-8') sage: R.<t> = Zmod(next_prime(8000^3))[] sage: ff = R.random_element(degree=3200) sage: time v = [ff*ff for i in [1..100]] CPU times: user 0.18 s, sys: 0.00 s, total: 0.18 s Wall time: 0.18 s sage: S = magma(R) sage: f = magma(ff) sage: magma.eval('time z:=[%s*%s : i in [1..100]]'%(f.name(), f.name())) 'Time: 0.530'
* Large degree polynomial multiplication over ZZ (Sage is five times as fast).
---------------------------------------------------------------------- | Sage Version 4.0.1.rc1, Release Date: 2009-06-04 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: R.<x>=ZZ['x'] sage: ff = R.random_element(degree=3200) sage: gg = R.random_element(degree=3200) sage: time v = [ff*gg^i for i in [1..40]] CPU times: user 22.29 s, sys: 0.22 s, total: 22.50 s Wall time: 22.51 s sage: S = magma(R) sage: f = magma(ff) sage: g = magma(gg) sage: magma.eval('time z:=[%s*%s^i : i in [1..40]]'%(f.name(), g.name())) 'Time: 112.820'
* Sage is asymptotically faster for Quotrem over ZZ (used in computation of Sturm sequences)
sage: R.<x>=ZZ['x'] sage: ff = R.random_element(degree=10000) sage: gg = R.random_element(degree=5000) sage: time v=ff.quo_rem(gg) CPU times: user 0.17 s, sys: 0.02 s, total: 0.18 s Wall time: 0.18 s sage: f=magma(ff) sage: g=magma(gg) sage: magma.eval('time z:=Quotrem(%s,%s)'%(f.name(), g.name())) 'Time: 1.970'
* Exact logarithm of integers is faster in Sage.
sage: def zlog(m, n, k): ....: for i in range(0, m/1000): ....: a = ZZ.random_element(n)+2 ....: b = ZZ.random_element(k) ....: c = a^b ....: for j in range (0, 1000): ....: c.exact_log(a) ....: sage: time zlog(1000000, 100, 100) CPU times: user 0.62 s, sys: 0.23 s, total: 0.85 s Wall time: 0.85 s sage: time zlog(1000000, 2^50, 100) CPU times: user 2.10 s, sys: 0.27 s, total: 2.36 s Wall time: 2.36 s sage: time zlog(1000000, 100, 2^10) CPU times: user 1.75 s, sys: 0.26 s, total: 2.01 s Wall time: 2.01 s
> procedure z_log(m, n, k) procedure> for i := 0 to (m div 1000) do procedure|for> a := Random(n) + 2; procedure|for> b := Random(k); procedure|for> c := a^b; procedure|for> for j := 1 to 1000 do procedure|for|for> d := Ilog(a, c); procedure|for|for> end for; procedure|for> end for; procedure> end procedure; > time z_log(1000000, 100, 100); Time: 1.180 > time z_log(1000000, 2^50, 100); Time: 5.830 > time z_log(1000000, 100, 2^10); Time: 6.450
* Rank of random dense matrices over GF(2) (Sage is more than twice the speed).
---------------------------------------------------------------------- | Sage Version 4.0.1.rc1, Release Date: 2009-06-04 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: A = random_matrix(GF(2),10^4,10^4) sage: %time A.rank() CPU times: user 1.20 s, sys: 0.01 s, total: 1.20 s Wall time: 1.20 s 9999 sage: A = random_matrix(GF(2),2*10^4,2*10^4) sage: %time A.rank() CPU times: user 9.34 s, sys: 0.02 s, total: 9.36 s Wall time: 9.36 s 19937 sage: A = random_matrix(GF(2),2*10^4,2*10^4) sage: %time A.echelonize(algorithm='pluq') CPU times: user 6.79 s, sys: 0.01 s, total: 6.80 s Wall time: 6.80 s sage: A = random_matrix(GF(2),3.2*10^4,3.2*10^4) sage: %time A.rank() CPU times: user 31.57 s, sys: 0.05 s, total: 31.62 s Wall time: 31.63 s 19937 sage: %time A.echelonize(algorithm='pluq') CPU times: user 27.10 s, sys: 0.04 s, total: 27.14 s Wall time: 27.15 s
Magma V2.15-8 Thu Jun 4 2009 21:58:05 on eno [Seed = 3168701748] Type ? for help. Type <Ctrl>-D to quit. > A:=RandomMatrix(GF(2),10^4,10^4); > time Rank(A); 9999 Time: 3.040 > A:=RandomMatrix(GF(2),2*10^4,2*10^4); > time Rank(A); 19999 Time: 17.750 > A:=RandomMatrix(GF(2),32*10^3,32*10^3); > time Rank(A); 31999 Time: 62.980
* Fast HNF and determinant for integer matrices, especially for as the entries get large.
* Modular composition over GF(2)
sage: P.<x> = GF(2)[] sage: d = 5*10^4; f,g,h = P.random_element(d),P.random_element(d),P.random_element(d) sage: %time r = f.modular_composition(g,h) CPU times: user 2.69 s, sys: 0.01 s, total: 2.69 s Wall time: 2.70 s
sage: fM,gM,hM = magma(f),magma(g),magma(h) sage: t = magma.cputime(); rM = fM.ModularComposition(gM,hM); magma.cputime(t) 13.44 sage: rM == magma(r) True
sage: d = 5*10^5; f,g,h = P.random_element(d),P.random_element(d),P.random_element(d) sage: %time r = f.modular_composition(g,h) ^ACPU times: user 288.13 s, sys: 0.14 s, total: 288.26 s Wall time: 288.34 s sage: %time r = f.modular_composition(g,h,algorithm='ntl') CPU times: user 303.45 s, sys: 0.04 s, total: 303.49 s Wall time: 303.60 s sage: fM,gM,hM = magma(f),magma(g),magma(h) sage: t = magma.cputime(); rM = fM.ModularComposition(gM,hM); magma.cputime(t) 832.03999999999996
* Sage computed ranks of elliptic curves and generators, fast... and correctly
sage: D=6611719866 sage: E=EllipticCurve([0,0,0,-D^2,0]) sage: time E.rank() CPU times: user 0.01 s, sys: 0.01 s, total: 0.02 s Wall time: 3.20 s 6 sage: time E.gens() CPU times: user 0.07 s, sys: 0.06 s, total: 0.13 s Wall time: 5.89 s [(247424194842066/37249 : 373863724821481185720/7189057 : 1), (165541824817/16 : 51806810701954601/64 : 1), (15062000442 : 1660900534642656 : 1), (548503784857/36 : -365985935192610019/216 : 1), (11638545941238203281/246490000 : 39314069377271931544287972679/3869893000000 : 1), (514136077885092448181278/169697035249 : -368651568597676351513664298941602072/69905505791578807 : 1)]
....But Magma has the following features which Sage doesn't have (yet)
* fast and correct multivariate polynomial factorisation algorithm
* fast Gröbner basis computations mod p (p > 2, p prime) and QQ
* fast GCD of multivariate polynomials
* 3, 4, and 8 descent
* fast computation of Riemann/Siegel theta functions
* fast dense linear algebra over finite extension fields