List of Computations where Sage is Noticeably Faster than Magma....
Machines used
eno: (a binary of Sage 4.0.1-rc1 is available at /home/wbhart/sage-4.0.1.rc1/sage on eno) (a script to stop background processes for benchmarking purposes is available at /home/wbhart/script - but please stop it when done)
4-core: model name : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz
Benchmarks
* Large degree polynomial multiplication modulo n (sage is three times as fast):
[[email protected] sage-4.0.1.rc1]$ ./sage ---------------------------------------------------------------------- | Sage Version 4.0.1.rc1, Release Date: 2009-06-04 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: magma.version() ((2, 15, 8), 'V2.15-8') sage: R.<t> = Zmod(next_prime(8000^3))[] sage: ff = R.random_element(degree=3200) sage: time v = [ff*ff for i in [1..100]] CPU times: user 0.18 s, sys: 0.00 s, total: 0.18 s Wall time: 0.18 s sage: S = magma(R) sage: f = magma('%s![Random(0,10000000) : i in [1..3200]]'%S.name()) sage: magma.eval('time z:=[%s*%s : i in [1..100]]'%(f.name(), f.name())) 'Time: 0.540'
* Computing factorials (Magma takes 50% longer).
[[email protected]]$ ~/eno/build/sage-3.4.alpha0/sage ---------------------------------------------------------------------- | Sage Version 3.4.alpha0, Release Date: 2009-02-24 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: magma.version() ((2, 15, 5), 'V2.15-5') sage: time n = factorial(10^6) CPU times: user 0.94 s, sys: 0.02 s, total: 0.96 s Wall time: 0.98 s sage: time magma.eval('time n := Factorial(10^6);') CPU times: user 0.00 s, sys: 0.02 s, total: 0.02 s Wall time: 2.95 s 'Time: 1.440' sage: time magma.eval('time n := Factorial(10^7);') CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 27.88 s 'Time: 27.340' sage: time n = factorial(10^7) CPU times: user 18.60 s, sys: 0.17 s, total: 18.76 s Wall time: 19.11 s sage: 27.34/18.76 1.45735607675906
* Rank of random dense matrices over GF(2)
---------------------------------------------------------------------- | Sage Version 4.0.alpha0, Release Date: 2009-05-15 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: A = random_matrix(GF(2),10^4,10^4) sage: %time A.rank() CPU times: user 1.23 s, sys: 0.01 s, total: 1.23 s Wall time: 1.25 s 9998 sage: A = random_matrix(GF(2),2*10^4,2*10^4) sage: %time A.rank() CPU times: user 9.65 s, sys: 0.02 s, total: 9.67 s Wall time: 9.85 s 19937 sage: A = random_matrix(GF(2),2*10^4,2*10^4) sage: %time A.echelonize(algorithm='pluq') CPU times: user 7.26 s, sys: 0.02 s, total: 7.27 s Wall time: 7.40 s sage: A = random_matrix(GF(2),3.2*10^4,3.2*10^4) sage: %time A.rank() CPU times: user 34.60 s, sys: 0.05 s, total: 34.65 s Wall time: 35.21 s 19937 sage: %time A.echelonize(algorithm='pluq') CPU times: user 28.35 s, sys: 0.04 s, total: 28.39 s Wall time: 28.86 s
Magma V2.15-8 Sun May 17 2009 13:16:26 on eno [Seed = 595144467] Type ? for help. Type <Ctrl>-D to quit. > A:=RandomMatrix(GF(2),10^4,10^4); > time Rank(A); 10000 Time: 2.790 > A:=RandomMatrix(GF(2),2*10^4,2*10^4); > time Rank(A); 20000 Time: 19.500 > A:=RandomMatrix(GF(2),32*10^3,32*10^3); > time Rank(A); 31999 Time: 63.480
....But Magma has the following features which Sage doesn't have (yet)
* fast and correct multivariate polynomial factorisation algorithm
* fast Gröbner basis computations mod p (p > 2, p prime) and QQ
* fast GCD of multivariate polynomials