Size: 3932
Comment:
|
Size: 3942
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 73: | Line 73: |
Line 78: | Line 79: |
Line 82: | Line 84: |
Line 87: | Line 90: |
Line 93: | Line 97: |
Magma V2.15-8 Sun May 17 2009 13:16:26 on eno [Seed = 595144467] | Magma V2.15-8 Thu Jun 4 2009 21:58:05 on eno [Seed = 3168701748] |
Line 97: | Line 101: |
10000 Time: 2.790 |
9999 Time: 3.040 |
Line 102: | Line 106: |
20000 Time: 19.500 |
19999 Time: 17.750 |
Line 108: | Line 112: |
Time: 63.480 | Time: 62.980 |
List of Computations where Sage is Noticeably Faster than Magma....
Machines used
eno: (a binary of Sage 4.0.1-rc1 is available at /home/wbhart/sage-4.0.1.rc1/sage on eno) (a script to stop background processes for benchmarking purposes is available at /home/wbhart/script - but please stop it when done)
4-core: model name : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz
Benchmarks
* Large degree polynomial multiplication modulo n (sage is three times as fast):
[[email protected] sage-4.0.1.rc1]$ ./sage ---------------------------------------------------------------------- | Sage Version 4.0.1.rc1, Release Date: 2009-06-04 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: magma.version() ((2, 15, 8), 'V2.15-8') sage: R.<t> = Zmod(next_prime(8000^3))[] sage: ff = R.random_element(degree=3200) sage: time v = [ff*ff for i in [1..100]] CPU times: user 0.18 s, sys: 0.00 s, total: 0.18 s Wall time: 0.18 s sage: S = magma(R) sage: f = magma('%s![Random(0,10000000) : i in [1..3200]]'%S.name()) sage: magma.eval('time z:=[%s*%s : i in [1..100]]'%(f.name(), f.name())) 'Time: 0.540'
* Computing factorials (Sage is more than twice the speed).
[[email protected] sage-4.0.1.rc1]$ ./sage ---------------------------------------------------------------------- | Sage Version 4.0.1.rc1, Release Date: 2009-06-04 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: magma.version() ((2, 15, 8), 'V2.15-8') sage: time n = factorial(10^6) CPU times: user 0.57 s, sys: 0.01 s, total: 0.58 s Wall time: 0.59 s sage: time magma.eval('time n := Factorial(10^6);') CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 1.45 s 'Time: 1.440' sage: time magma.eval('time n := Factorial(10^7);') CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 27.33 s 'Time: 27.300' sage: time n = factorial(10^7) CPU times: user 11.50 s, sys: 0.25 s, total: 11.75 s Wall time: 11.75 s sage: 27.30/11.75 2.32340425531915
* Rank of random dense matrices over GF(2)
---------------------------------------------------------------------- | Sage Version 4.0.1.rc1, Release Date: 2009-06-04 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: A = random_matrix(GF(2),10^4,10^4) sage: %time A.rank() CPU times: user 1.20 s, sys: 0.01 s, total: 1.20 s Wall time: 1.20 s 9999 sage: A = random_matrix(GF(2),2*10^4,2*10^4) sage: %time A.rank() CPU times: user 9.34 s, sys: 0.02 s, total: 9.36 s Wall time: 9.36 s 19937 sage: A = random_matrix(GF(2),2*10^4,2*10^4) sage: %time A.echelonize(algorithm='pluq') CPU times: user 6.79 s, sys: 0.01 s, total: 6.80 s Wall time: 6.80 s sage: A = random_matrix(GF(2),3.2*10^4,3.2*10^4) sage: %time A.rank() CPU times: user 31.57 s, sys: 0.05 s, total: 31.62 s Wall time: 31.63 s 19937 sage: %time A.echelonize(algorithm='pluq') CPU times: user 27.10 s, sys: 0.04 s, total: 27.14 s Wall time: 27.15 s
Magma V2.15-8 Thu Jun 4 2009 21:58:05 on eno [Seed = 3168701748] Type ? for help. Type <Ctrl>-D to quit. > A:=RandomMatrix(GF(2),10^4,10^4); > time Rank(A); 9999 Time: 3.040 > A:=RandomMatrix(GF(2),2*10^4,2*10^4); > time Rank(A); 19999 Time: 17.750 > A:=RandomMatrix(GF(2),32*10^3,32*10^3); > time Rank(A); 31999 Time: 62.980
....But Magma has the following features which Sage doesn't have (yet)
* fast and correct multivariate polynomial factorisation algorithm
* fast Gröbner basis computations mod p (p > 2, p prime) and QQ
* fast GCD of multivariate polynomials