Magma versus Sage

The goal of Magma is to provide a mathematically rigorous environment for solving computationally hard problems in algebra, number theory, geometry and combinatorics. The core goal of Sage is to provide a free open source alternative to Magma. This includes being able to do everything Magma does and to do it better. This page is meant to track our progress in that direction. We intend to accomplish this by some combination of: (1) extremely hard work, (2) better technology, (3) getting Magma open sourced and incorporated into Sage, (4) sharing of effort (e.g., people who work for Magma sharing the code and algorithms they produce with the Sage community).

The point of this page is to list functionality that Magma has and whether Sage has it or not, and if Sage has said functionality, how does the speed compare. It is basically to answer the question "can Magma still do anything Sage can't do".

The main reference for what Magma does is the Magma reference manual.

See also Sage versus Magma.

Functionality in Magma not in Sage

There are tons of things that Magma does that Sage also obviously does, e.g., "compute with univariate polynomials". The goal is to list here only things that Magma does that Sage doesn't do. Also, if Magma can do something much more efficiently than Sage, it should be listed here.

Platform Support

Magma officially supports the following hardware/OS platforms that Sage does not officially support:

Alpha (Linux), Alpha (OSF/Tru64), IBM PowerPC64 (AIX), IBM PowerPC64 (Linux), Macintosh 64-bit Intel (OS X 10.5 [Leopard]), Sparc (Solaris), Sparc64 (Solaris)

Notes:

Univariate Polynomials

Interpolation

Magma has the following function, which Sage doesn't have.

Interpolation(I, V) : [ RngElt ], [ RngElt ] -> RngUPolElt

    This function finds a univariate polynomial that evaluates to the values V in the interpolation points I. Let K be a field and n > 0 an integer. Given sequences I and V both consisting of n elements of K, return the unique univariate polynomial p over K of degree less than n such that p(I[i]) = V[i] for each 1≤i≤n. 

The corresponding Sage function would likely work like this:

sage: R.<x> = QQ[]
sage: f = R.interpolation([1,2/3,3], [-1,2,3/5])

Then f would be the monic polynomial over QQ such that f(1) = -1, f(2/3) = 2 and f(3) = 3/5.

Note that Sage has

sage: R.<x> = QQ[]
sage: R.lagrange_polynomial([(1,-1),(2/3,2),(3,3/5)])
21/5*x^2 - 16*x + 54/5

so this problem can easily be solved via an alias.

Reductum

Magma has this and Sage doesn't:

Reductum(f) : RngUPolElt -> RngUPolElt
    The reductum of a polynomial f, which is the polynomial obtained by removing the leading term of f. 

PowerPolynomial

Magma has this and Sage doesn't:

PowerPolynomial(f,n) : RngUPolElt, RngIntElt -> RngUPolElt
    The polynomial whose roots are the nth powers of the roots of the given polynomial (which should have coefficients in some field). 

Here is how to implement it in Sage:

def power_polynomial(f,n):
    y0,y1=PolynomialRing(f.base_ring(),2,'y').gens()
    return f(y1).resultant(y0-y1**n,y1).substitute({y0:f.parent().gen(),y1:0})

It would also be easy to generalise, retruning the polynomial whose roots are g(a) where a runs over the roots of f and g is another univariate polynomial. Just change y1**n to g(y1).

PrimitivePart, MaxNorm, SumNorm

For polynomials over ZZ, Magma has these and Sage doesn't:

PrimitivePart(p) : RngUPolElt -> RngUPolElt
    The primitive part of p, being p divided by the content of p. 

MaxNorm(p) : RngUPolElt -> RngIntElt
    The maximum of the absolute values of the coefficients of p. 

SumNorm(p) : RngUPolElt -> RngIntElt
    The sum of the coefficients of p. 

DedekindTest(p, m) : RngUPolElt, RngIntElt -> Boolelt
    Given a monic polynomial p (univariate or multivariate in one variable) and a 
    prime number m, this returns true if p satisfies the Dedekind criterion at m, 
    and false otherwise. The Dedekind criterion is satisfied at m if and only if 
    the equation order corresponding to p is locally maximal at m [PZ89, p.295]. 

In Sage we would have:

sage: R.<x> = ZZ[]
sage: f = 6*(x^3 + 2*x + 3)
sage: f.primitive_part()
x^3 + 2*x + 3
sage: f.max_norm()
sage: f.sum_norm()
sage: f.dedekind_test(3)

Normalize

Magma has this and Sage doesn't, and it looks like it could be useful.

Normalize(f) : RngUPolElt -> RngUPolElt
    Given a univariate polynomial f over the ring R, this function returns the unique 
normalized polynomial g which is associated to f (so g = uf for some unit in R). This is 
chosen so that if R is a field then g is monic, if R is Z then the leading coefficient 
of g is positive, if R is a polynomial ring itself, then the leading coefficient of g 
is recursively normalized, and so on for other rings. 

Factorization

Sage is missing these:

DistinctDegreeFactorization(f) : RngUPolElt -> [ <RngIntElt, RngUPolElt> ]

    Degree: RngIntElt                   Default: 0

    Given a squarefree univariate polynomial f∈F[x] with F a finite field, this 
function returns the distinct-degree factorization of f as a sequence of pairs, 
each consisting of a degree d, together with the product of the degree-d 
irreducible factors of f.

    If the optional parameter Degree is given a value L > 0, then only (products of) 
factors up to degree L are returned. 

EqualDegreeFactorization(f, d, g) : RngUPolElt, RngIntElt, RngUPolElt -> [ RngUPolElt ]

    Given a squarefree univariate polynomial f∈F[x] with F a finite field, and 
integer d and another polynomial g∈F[x] such that F is known to be the product of 
distinct degree-d irreducible polynomials alone, and g is xq mod f, where q is the 
cardinality of F, this function returns the irreducible factors of f as a sequence 
of polynomials (no multiplicities are needed).

    If the conditions are not satisfied, the result is unpredictable. This function 
allows one to split f, assuming that one has computed f in some special way. 

Sage should definitely have this, but doesn't.

IsSeparable(f) : RngUPolElt -> BoolElt

    Given a polynomial f∈K[x] such that f is a polynomial of degree ≥1 and K 
is a field allowing polynomial factorization, this function returns true
 iff f is separable. 

Misc poly functions

The QMatrix of a degree d polynomial f over F_q is the matrix of the qth power Frobenius map on the d-dimensional F_q-algebra F_q[x]/(f):

QMatrix(f) : RngUPolElt -> AlgMatElt
    Given a univariate polynomial f of degree d over a finite field F, this 
function returns the Berlekamp Q-matrix associated with f, which is an 
element of the degree d matrix algebra over F. 

The CompanionMatrix of a degree d polynomial f over a ring R is the matrix of the multiplication-by-x map on the R-algebra R[x]/(f). Sage doesn't have this easy function:

CompanionMatrix(f) : RngUPolElt -> AlgMatElt

    Given a monic univariate polynomial f of degree d over some ring R, return the 
companion matrix of f as an element of the full matrix algebra of degree d over R. 
The companion matrix for f=a_0 + a_1x + ... + a_{d-1}x^{d-1} + x^d is given by

        [    0    1    0    ...        0 ]
        [    0    0    1    ...        0 ]
        [    .    .    .    .          . ]
        [    .    .    .     .         . ]
        [    .    .    .      .        . ]
        [ -a_0 -a_1 -a_2    ... -a_(d-1) ]

Hensel Lifting

HenselLift(f, s, P) : RngUPolElt, [ RngUPolElt ], RngUPol -> [ RngUPolElt ]

    Given the sequence of irreducible factors s modulo some prime p of the univariate 
integer polynomial f, return the Hensel lifting into the polynomial ring P, which must 
be the univariate polynomial ring over a residue class ring modulo some power of p.
Thus given f = ∏i si mod p, this returns f = ∏i ti mod pk for some k ≥1, as a 
sequence of polynomials in Z/pkZ. The factorization of f modulo p must be 
squarefree, that is, s should not contain repeated factors. 

See http://magma.maths.usyd.edu.au/magma/htmlhelp/text304.htm#1869 for an example of Hensel lifting in Magma.

Galois Theory

Magma's support for computing Galois groups of polynomials over QQ is substantially better than that of Pari, or indeed anything else. The algorithms used by Magma are well-documented but implementing them would be a very major project.

Modular Forms

Magma has:

Getting either of these into Sage would be a worthy project (the first much easier than the second).

The second is very much also work of John Voight. I don't think the second would be too hard, given the work that John Voight and Lassina Dembele have already done, since they have both written numerous nice papers very clearly explaining the algorithms, and they are more than willing to share all the Magma code they wrote. -- William Stein.

Coding Theory

Weight distributions

Magma can compute weight distributions quickly for any base field.

WeightDistribution(C) : Code -> [ <RngIntElt, RngIntElt> ]

Sage can only do this quickly in the binary case (using Cython) or in the case of a field of size q<11 (using Leon's code).

Other code constructions

Magma has Quantum codes, codes over rings, LDPC codes, AG codes, and many other code constructions which Sage does not have.

http://magma.maths.usyd.edu.au/magma/htmlhelp/text1694.htm#17385 http://magma.maths.usyd.edu.au/magma/htmlhelp/text1686.htm http://magma.maths.usyd.edu.au/magma/htmlhelp/text1722.htm

Decoding algorithms

Magma has a wide range of specialized decoding algorithms which Sage does not have.

http://magma.maths.usyd.edu.au/magma/htmlhelp/text1681.htm

Analytic jacobians of hyperelliptic curves

Magma has a wide-ranging package implemented principally by Paul van Wamelen for computing analytic parametrizations of Jacobians of hyperelliptic curves. Nick Alexander has code for doing some of this and has code for interfacing to Magma's code for doing this buried in his tree; contact him if you're interested in doing more work in this direction.

http://magma.maths.usyd.edu.au/magma/htmlhelp/text1400.htm

Quadratic Forms

Binary Quadratic Forms

Magma has the following and Sage doesn't.

Composition(f, g) : QuadBinElt, QuadBinElt -> QuadBinElt

    Al: MonStgElt                       Default: "Gauss"
    Reduction: BoolElt                  Default: false
Returns the composition of two binary quadratic forms f and g. The default for Composition is Reduction := false, so that one can work in the group of forms, rather in the set of class group representatives. The function Composition takes a further parameter Al which specifies whether the algorithm of Gauss or Shanks, set to "Gauss" by default. The algorithm of Shanks performs partial intermediate reductions, so the combination Reduction := false and Al := "Shanks" are incompatible and returns a runtime error.

IsEquivalent(f, g) : QuadBinElt, QuadBinElt -> BoolElt, AlgMatElt

Return true if the quadratic forms f and g reduce to the same form and false otherwise. If true and the discriminant is negative, then the transformation matrix is also returned. An error is returned if the forms are not of the same discriminant.

AmbiguousForms(Q) : QuadBin -> SeqEnum

Enumerates the ambiguous forms of negative discriminant D, where D is the discriminant of the magma of binary quadratic forms Q.

Order(f) : QuadBinElt -> RngIntElt

For a binary quadratic form f, returns its order as an element of the class group Cl(Q) where Q is the parent of f.

BinaryQuadraticForms(D) : RngIntElt -> QuadBin

QuadraticForms(D) : RngIntElt -> QuadBin

Create the structure of integral binary quadratic forms of discriminant D.

Specialized Functionality in Magma also in Sage

Here we list specialized things Magma does that Sage also does. For example, both Magma and Sage have extensive support for computing with modular symbols (far beyond all other math software).

Specialized Functionality in Sage not in Magma

Here we list functionality in Sage that Magma doesn't have, but is functionality that is part of Magma's core goals, i.e., solving computationally hard problems in algebra, number theory, geometry and combinatorics. Note that because Sage does calculus, graphics, statics and numerical computation, there are thousands of functions and features in Sage that are not in Magma and never will be in Magma, and this won't be mentioned here.