Differences between revisions 59 and 61 (spanning 2 versions)
Revision 59 as of 2008-03-28 23:37:54
Size: 21702
Editor: was
Revision 61 as of 2008-03-29 00:31:37
Size: 22460
Editor: was
Deletions are marked like this. Additions are marked like this.
Line 586: Line 586:
=== Interactive 3d plotting ===
def example(clr=Color('orange'), f=4*x*exp(-x^2-y^2), xrange='(-2, 2)', yrange='(-2,2)',
    zrot=(0,pi), xrot=(0,pi), zoom=(1,(1/2,3)), square_aspect=('Square Frame', False),
    tachyon=('Ray Tracer', True)):
    xmin, xmax = sage_eval(xrange); ymin, ymax = sage_eval(yrange)
    P = plot3d(f, (x, xmin, xmax), (y, ymin, ymax), color=clr)
    html('<h1>Plot of $f(x,y) = %s$</h1>'%latex(f))
    aspect_ratio = [1,1,1] if square_aspect else [1,1,1/2]
    show(P.rotate((0,0,1), -zrot).rotate((1,0,0),xrot),
         viewer='tachyon' if tachyon else 'jmol',
         figsize=6, zoom=zoom, frame=False,


Sage Interactions

Post code that demonstrates the use of the interact command in Sage here. It should be easy for people to just scroll through and paste examples out of here into their own sage notebooks.

We'll likely restructure and reorganize this once we have some nontrivial content and get a sense of how it is laid out. If you have suggestions on how to improve interact, add them [:interactSuggestions: here] or email [email protected].



Evaluate a bit of code in a given system

by William Stein (there is no way yet to make the text box big):

def _(system=selector([('sage0', 'Sage'), ('gp', 'PARI'), ('magma', 'Magma')]), code='2+2'):
    print globals()[system].eval(code)


Graph Theory

Automorphism Groups of some Graphs

by William Stein (I spent less than five minutes on this):

def _(graph=['CycleGraph', 'CubeGraph', 'RandomGNP'],
      n=selector([1..10],nrows=1), p=selector([10,20,..,100],nrows=1)):
    print graph
    if graph == 'CycleGraph':
       print "n (=%s): number of vertices"%n
       G = graphs.CycleGraph(n)
    elif graph == 'CubeGraph':
       if n > 8:
           print "n reduced to 8"
           n = 8
       print "n (=%s): dimension"%n
       G = graphs.CubeGraph(n)
    elif graph == 'RandomGNP':
       print "n (=%s) vertices"%n
       print "p (=%s%%) probability"%p
       G = graphs.RandomGNP(n, p/100.0)

    print G.automorphism_group()



A contour map and 3d plot of two inverse distance functions

by William Stein

def _(q1=(-1,(-3,3)), q2=(-2,(-3,3)), 
      cmap=['autumn', 'bone', 'cool', 'copper', 'gray', 'hot', 'hsv', 
           'jet', 'pink', 'prism', 'spring', 'summer', 'winter']):
     x,y = var('x,y')
     f = q1/sqrt((x+1)^2 + y^2) + q2/sqrt((x-1)^2+(y+0.5)^2)
     C = contour_plot(f, (-2,2), (-2,2), plot_points=30, contours=15, cmap=cmap)
     show(C, figsize=3, aspect_ratio=1)
     show(plot3d(f, (x,-2,2), (y,-2,2)), figsize=5, viewer='tachyon')     


A simple tangent line grapher

by Marshall Hampton

html('<h2>Tangent line grapher</h2>')
def tangent_line(f = input_box(default=sin(x)), xbegin = slider(0,10,1/10,0), xend = slider(0,10,1/10,10), x0 = slider(0, 1, 1/100, 1/2)):
    prange = [xbegin, xend]
    x0i = xbegin + x0*(xend-xbegin)
    df = diff(f)
    tanf = f(x0i) + df(x0i)*(x-x0i)
    fplot = plot(f, prange[0], prange[1])
    print 'Tangent line is y = ' + tanf._repr_()
    tanplot = plot(tanf, prange[0], prange[1], rgbcolor = (1,0,0))
    fmax = f.find_maximum_on_interval(prange[0], prange[1])[0]
    fmin = f.find_minimum_on_interval(prange[0], prange[1])[0]
    show(fplot + tanplot, xmin = prange[0], xmax = prange[1], ymax = fmax, ymin = fmin)


Function tool

Enter symbolic functions f, g, and a, a range, then click the appropriate button to compute and plot some combination of f, g, and a along with f and g. This is inspired by the Matlab funtool GUI.

x = var('x')

def _(f=sin(x), g=cos(x), xrange=input_box((0,1)), yrange='auto', a=1,
      action=selector(['f', 'df/dx', 'int f', 'num f', 'den f', '1/f', 'finv',
                       'f+a', 'f-a', 'f*a', 'f/a', 'f^a', 'f(x+a)', 'f(x*a)', 
                       'f+g', 'f-g', 'f*g', 'f/g', 'f(g)'], 
             width=15, nrows=5, label="h = "),
      do_plot = ("Draw Plots", True)):

        f = SR(f); g = SR(g); a = SR(a)
    except TypeError, msg:
        print msg[-200:]
        print "Unable to make sense of f,g, or a as symbolic expressions."
    if not (isinstance(xrange, tuple) and len(xrange) == 2):
          xrange = (0,1)
    h = 0; lbl = ''
    if action == 'f':
        h = f
        lbl = 'f'
    elif action == 'df/dx':
        h = f.derivative(x)
        lbl = '\\frac{df}{dx}'
    elif action == 'int f':
        h = f.integrate(x)
        lbl = '\\int f dx'
    elif action == 'num f':
        h = f.numerator()
        lbl = '\\text{numer(f)}'
    elif action == 'den f':
        h = f.denominator()
        lbl = '\\text{denom(f)}'
    elif action == '1/f':
        h = 1/f
        lbl = '\\frac{1}{f}'
    elif action == 'finv':
        h = solve(f == var('y'), x)[0].rhs()
        lbl = 'f^{-1}(y)'
    elif action == 'f+a':
        h = f+a
        lbl = 'f + a'
    elif action == 'f-a':
        h = f-a
        lbl = 'f - a'
    elif action == 'f*a':
        h = f*a
        lbl = 'f \\times a'
    elif action == 'f/a':
        h = f/a
        lbl = '\\frac{f}{a}'
    elif action == 'f^a':
        h = f^a
        lbl = 'f^a'
    elif action == 'f^a':
        h = f^a
        lbl = 'f^a'
    elif action == 'f(x+a)':
        h = f(x+a)
        lbl = 'f(x+a)'
    elif action == 'f(x*a)':
        h = f(x*a)
        lbl = 'f(xa)'
    elif action == 'f+g':
        h = f+g
        lbl = 'f + g'
    elif action == 'f-g':
        h = f-g
        lbl = 'f - g'
    elif action == 'f*g':
        h = f*g
        lbl = 'f \\times g'
    elif action == 'f/g':
        h = f/g
        lbl = '\\frac{f}{g}'
    elif action == 'f(g)':
        h = f(g)
        lbl = 'f(g)'
    html('<center><font color="red">$f = %s$</font></center>'%latex(f))
    html('<center><font color="green">$g = %s$</font></center>'%latex(g))
    html('<center><font color="blue"><b>$h = %s = %s$</b></font></center>'%(lbl, latex(h)))
    if do_plot:
        P = plot(f, xrange, color='red', thickness=2) +  \
            plot(g, xrange, color='green', thickness=2) + \
            plot(h, xrange, color='blue', thickness=2)
        if yrange == 'auto':
            show(P, xmin=xrange[0], xmax=xrange[1])
            yrange = sage_eval(yrange)
            show(P, xmin=xrange[0], xmax=xrange[1], ymin=yrange[0], ymax=yrange[1])


Differential Equations

Euler's Method in one variable

by Marshall Hampton. This needs some polishing but its usable as is.

def tab_list(y, headers = None):
    Converts a list into an html table with borders.
    s = '<table border = 1>'
    if headers:
        for q in headers:
            s = s + '<th>' + str(q) + '</th>'
    for x in y:
        s = s + '<tr>'
        for q in x:
            s = s + '<td>' + str(q) + '</td>'
        s = s + '</tr>'
    s = s + '</table>'
    return s
var('x y')
def euler_method(y_exact_in = input_box('-cos(x)+1.0', type = str, label = 'Exact solution = '), y_prime_in = input_box('sin(x)', type = str, label = "y' = "), start = input_box(0.0, label = 'x starting value: '), stop = input_box(6.0, label = 'x stopping value: '), startval = input_box(0.0, label = 'y starting value: '), nsteps = slider([2^m for m in range(0,10)], default = 10, label = 'Number of steps: '), show_steps = slider([2^m for m in range(0,10)], default = 8, label = 'Number of steps shown in table: ')):
    y_exact = lambda x: eval(y_exact_in)
    y_prime = lambda x,y: eval(y_prime_in)
    stepsize = float((stop-start)/nsteps)
    steps_shown = max(nsteps,show_steps)
    sol = [startval]
    xvals = [start]
    for step in range(nsteps):
        sol.append(sol[-1] + stepsize*y_prime(xvals[-1],sol[-1]))
        xvals.append(xvals[-1] + stepsize)
    sol_max = max(sol + [find_maximum_on_interval(y_exact,start,stop)[0]])
    sol_min = min(sol + [find_minimum_on_interval(y_exact,start,stop)[0]])
    show(plot(y_exact(x),start,stop,rgbcolor=(1,0,0))+line([[xvals[index],sol[index]] for index in range(len(sol))]),xmin=start,xmax = stop, ymax = sol_max, ymin = sol_min)    
    if nsteps < steps_shown:
        table_range = range(len(sol))
        table_range = range(0,floor(steps_shown/2)) + range(len(sol)-floor(steps_shown/2),len(sol))
    html(tab_list([[i,xvals[i],sol[i]] for i in table_range], headers = ['step','x','y']))


Linear Algebra

Numerical instability of the classical Gram-Schmidt algorithm

by Marshall Hampton (tested by William Stein, who thinks this is really nice!)

def GS_classic(a_list):
    Given a list of vectors or a matrix, returns the QR factorization using the classical (and numerically unstable) Gram-Schmidt algorithm.    
    if type(a_list) != list:
        cols = a_list.cols()
        a_list = [x for x in cols]
    indices = range(len(a_list))
    q = []
    r = [[0 for i in indices] for j in indices]
    v = [a_list[i].copy() for i in indices]
    for i in indices:
        for j in range(0,i):
            r[j][i] = q[j].inner_product(a_list[i])
            v[i] = v[i] - r[j][i]*q[j]
        r[i][i] = (v[i]*v[i])^(1/2)
    q = matrix([q[i] for i in indices]).transpose()
    return q, matrix(r)
def GS_modern(a_list):
    Given a list of vectors or a matrix, returns the QR factorization using the 'modern' Gram-Schmidt algorithm.    
    if type(a_list) != list:
        cols = a_list.cols()
        a_list = [x for x in cols]
    indices = range(len(a_list))
    q = []
    r = [[0 for i in indices] for j in indices]
    v = [a_list[i].copy() for i in indices]
    for i in indices:
        r[i][i] = v[i].norm(2)
        for j in range(i+1, len(indices)):
            r[i][j] = q[i].inner_product(v[j])
            v[j] = v[j] - r[i][j]*q[i]
    q = matrix([q[i] for i in indices]).transpose()
    return q, matrix(r)
html('<h2>Numerical instability of the classical Gram-Schmidt algorithm</h2>')
def gstest(precision = slider(range(3,53), default = 10), a1 = input_box([1,1/1000,1/1000]), a2 = input_box([1,1/1000,0]), a3 = input_box([1,0,1/1000])):
    myR = RealField(precision)
    displayR = RealField(5)
    html('precision in bits: ' + str(precision) + '<br>')
    A = matrix([a1,a2,a3])
    A = [vector(myR,x) for x in A]
    qn, rn = GS_classic(A)
    qb, rb = GS_modern(A)
    html('Classical Gram-Schmidt:')
    html('Stable Gram-Schmidt:')


Linear transformations

by Jason Grout

A square matrix defines a linear transformation which rotates and/or scales vectors. In the interact command below, the red vector represents the original vector (v) and the blue vector represents the image w under the linear transformation. You can change the angle and length of v by changing theta and r.

def linear_transformation(theta=slider(0, 2*pi, .1), r=slider(0.1, 2, .1, default=1)):
    v=vector([r*cos(theta), r*sin(theta)])
    w = A*v
    circles = sum([circle((0,0), radius=i, rgbcolor=(0,0,0)) for i in [1..2]])
    print jsmath("v = %s,\; %s v=%s"%(v.n(4),latex(A),w.n(4)))


Singular value decomposition

by Marshall Hampton

import scipy.linalg as lin
def rotell(sig,umat,t,offset=0):
    temp = matrix(umat)*matrix(2,1,[sig[0]*cos(t),sig[1]*sin(t)])
    return [offset+temp[0][0],temp[1][0]]
def svd_vis(a11=slider(-1,1,.05,1),a12=slider(-1,1,.05,1),a21=slider(-1,1,.05,0),a22=slider(-1,1,.05,1),ofs= selector(['Off','On'],label='offset image from domain')):
    rf_low = RealField(12)
    my_mat = matrix(rf_low,2,2,[a11,a12,a21,a22])
    u,s,vh = lin.svd(my_mat.numpy())
    if ofs == 'On': 
        offset = 3
        fsize = 6
        colors = [(1,0,0),(0,0,1),(1,0,0),(0,0,1)]
        offset = 0
        fsize = 5
        colors = [(1,0,0),(0,0,1),(.7,.2,0),(0,.3,.7)]
    vvects = sum([arrow([0,0],matrix(vh).row(i),rgbcolor = colors[i]) for i in (0,1)])    
    uvects = Graphics()
    for i in (0,1):
        if s[i] != 0: uvects += arrow([offset,0],vector([offset,0])+matrix(s*u).column(i),rgbcolor = colors[i+2])
    html('<h3>Singular value decomposition: image of the unit circle and the singular vectors</h3>')
    print jsmath("A = %s  = %s %s %s"%(latex(my_mat), latex(matrix(rf_low,u.tolist())), latex(matrix(rf_low,2,2,[s[0],0,0,s[1]])), latex(matrix(rf_low,vh.tolist())))) 
    image_ell = parametric_plot(rotell(s,u,t, offset),0,2*pi)
    show(graph_stuff,frame = False,axes=False,figsize=[fsize,fsize])


Number Theory

Continued Fraction Plotter

by William Stein

def _(number=e, ymax=selector([None,5,20,..,400],nrows=2), clr=Color('purple'), prec=[500,1000,..,5000]):
    c = list(continued_fraction(RealField(prec)(number))); print c
    show(line([(i,z) for i, z in enumerate(c)],rgbcolor=clr),ymax=ymax,figsize=[10,2])


Illustrating the prime number thoerem

by William Stein

def _(N=(100,(2..2000))):
    html("<font color='red'>$\pi(x)$</font> and <font color='blue'>$x/(\log(x)-1)$</font> for $x < %s$"%N)
    show(plot(prime_pi, 0, N, rgbcolor='red') + plot(x/(log(x)-1), 5, N, rgbcolor='blue'))


Computing Generalized Bernoulli Numbers

by William Stein (Sage-2.10.3)

def _(m=selector([1..15],nrows=2), n=(7,(3..10))):
    G = DirichletGroup(m)
    s = "<h3>First n=%s Bernoulli numbers attached to characters with modulus m=%s</h3>"%(n,m)
    s += '<table border=1>'
    s += '<tr bgcolor="#edcc9c"><td align=center>$\\chi$</td><td>Conductor</td>' + \
           ''.join('<td>$B_{%s,\chi}$</td>'%k for k in [1..n]) + '</tr>'
    for eps in G.list():
        v = ''.join(['<td align=center bgcolor="#efe5cd">$%s$</td>'%latex(eps.bernoulli(k)) for k in [1..n]])
        s += '<tr><td bgcolor="#edcc9c">%s</td><td bgcolor="#efe5cd" align=center>%s</td>%s</tr>\n'%(
             eps, eps.conductor(), v)
    s += '</table>'


Computing modular forms

by William Stein

j = 0
def _(N=[1..100], k=selector([2,4,..,12],nrows=1), prec=(3..40), 
      group=[(Gamma0, 'Gamma0'), (Gamma1, 'Gamma1')]):
    M = CuspForms(group(N),k)
    print j; global j; j += 1
    print M; print '\n'*3
    print "Computing basis...\n\n"
    if M.dimension() == 0:
         print "Space has dimension 0"
        prec = max(prec, M.dimension()+1)
        for f in M.basis():
    print "\n\n\nDone computing basis."


Computing the cuspidal subgroup

by William Stein

html('<h1>Cuspidal Subgroups of Modular Jacobians J0(N)</h1>')
def _(N=selector([1..8*13], ncols=8, width=10, default=10)):
    A = J0(N)
    print A.cuspidal_subgroup()


A Charpoly and Hecke Operator Graph

by William Stein

# Note -- in Sage-2.10.3; multiedges are missing in plots; loops are missing in 3d plots
def f(N = prime_range(11,400),
      p = selector(prime_range(2,12),nrows=1),
      three_d = ("Three Dimensional", False)):
    S = SupersingularModule(N)
    T = S.hecke_matrix(p)
    G = Graph(T, multiedges=True, loops=not three_d)
    html("<h1>Charpoly and Hecke Graph: Level %s, T_%s</h1>"%(N,p))
    if three_d:
        show(G.plot3d(), aspect_ratio=[1,1,1])


Demonstrating the Diffie-Hellman Key Exchange Protocol

by Timothy Clemans (refereed by William Stein)

def diffie_hellman(button=selector(["New example"],label='',buttons=True), 
    bits=("Number of bits of prime", (8,12,..512))):
    maxp = 2^bits
    p = random_prime(maxp)
    k = GF(p)
    g = k.multiplicative_generator()
    a = ZZ.random_element(10, maxp)
    b = ZZ.random_element(10, maxp)

    print """
.gamodp {
.gbmodp {
.dhsame {
<h2>%s-Bit Diffie-Hellman Key Exchange</h2>
<ol style="color:#000;font:12px Arial, Helvetica, sans-serif">
<li>Alice and Bob agree to use the prime number p=%s and base g=%s.</li>
<li>Alice chooses the secret integer a=%s, then sends Bob (<span class="gamodp">g<sup>a</sup> mod p</span>):<br/>%s<sup>%s</sup> mod %s = <span class="gamodp">%s</span>.</li>
<li>Bob chooses the secret integer b=%s, then sends Alice (<span class="gbmodp">g<sup>b</sup> mod p</span>):<br/>%s<sup>%s</sup> mod %s = <span class="gbmodp">%s</span>.</li>
<li>Alice computes (<span class="gbmodp">g<sup>b</sup> mod p</span>)<sup>a</sup> mod p:<br/>%s<sup>%s</sup> mod %s = <span class="dhsame">%s</span>.</li>
<li>Bob computes (<span class="gamodp">g<sup>a</sup> mod p</span>)<sup>b</sup> mod p:<br/>%s<sup>%s</sup> mod %s = <span class="dhsame">%s</span>.</li>
    """ % (bits, p, g, a, g, a, p, (g^a), b, g, b, p, (g^b), (g^b), a, p, 
       (g^ b)^a, g^a, b, p, (g^a)^b)


Plotting an elliptic curve over a finite field

E = EllipticCurve('37a')
def _(p=slider(prime_range(1000), default=389)):
    print "p = %s"%p



Web app: protein browser

by Marshall Hampton (tested by William Stein)

import urllib2 as U
def protein_browser(GenBank_ID = input_box('165940577', type = str), file_type = selector([(1,'fasta'),(2,'GenPept')])):
    if file_type == 2:
        gen_str = 'http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&sendto=t&id='
        gen_str = 'http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&sendto=t&dopt=fasta&id='
    f = U.urlopen(gen_str + GenBank_ID)        
    g = f.read()


Coalescent simulator

by Marshall Hampton

def next_gen(x, selection=1.0):
    '''Creates the next generation from the previous; also returns parent-child indexing list'''
    next_x = []
    for ind in range(len(x)):
        if random() < (1 + selection)/len(x):
            rind = 0
            rind = int(round(random()*(len(x)-1)+1/2))
    return [[x[0] for x in next_x],[x[1] for x in next_x]]
def coal_plot(some_data):
    '''Creates a graphics object from coalescent data'''
    gens = some_data[0]
    inds = some_data[1]
    gen_lines = line([[0,0]])
    pts = Graphics()
    ngens = len(gens)
    gen_size = len(gens[0])
    for x in range(gen_size):
        pts += point((x,ngens-1), hue = gens[0][x]/float(gen_size*1.1))
    p_frame = line([[-.5,-.5],[-.5,ngens-.5], [gen_size-.5,ngens-.5], [gen_size-.5,-.5], [-.5,-.5]])
    for g in range(1,ngens):
        for x in range(gen_size):
            old_x = inds[g-1][x]
            gen_lines += line([[x,ngens-g-1],[old_x,ngens-g]], hue = gens[g-1][old_x]/float(gen_size*1.1))
            pts += point((x,ngens-g-1), hue = gens[g][x]/float(gen_size*1.1))
    return pts+gen_lines+p_frame
d_field = RealField(10)
def coalescents(pop_size = slider(2,100,1,15,'Population size'), selection = slider(-1,1,.1,0, 'Selection for first taxon'), s = selector(['Again!'], label='Refresh', buttons=True)):
    print 'Population size: ' + str(pop_size)
    print 'Selection coefficient for first taxon: ' + str(d_field(selection))
    start = [i for i in range(pop_size)]
    gens = [start]
    inds = []
    while gens[-1][0] != gens[-1][-1]:
        g_index = len(gens) - 1
        n_gen = next_gen(gens[g_index], selection = selection)
        coal_data1 = [gens,inds]
    print 'Generations until coalescence: ' + str(len(gens))
    show(coal_plot(coal_data1), axes = False, figsize = [8,4.0*len(gens)/pop_size], ymax = len(gens)-1)


Miscellaneous Graphics

Interactive rotatable raytracing with Tachyon3d

C = cube(color=['red', 'green', 'blue'], aspect_ratio=[1,1,1],
         viewer='tachyon') + sphere((1,0,0),0.2)
def example(theta=(0,2*pi), phi=(0,2*pi), zoom=(1,(1,4))):
    show(C.rotate((0,0,1), theta).rotate((0,1,0),phi), zoom=zoom)


Interactive 3d plotting

def example(clr=Color('orange'), f=4*x*exp(-x^2-y^2), xrange='(-2, 2)', yrange='(-2,2)', 
    zrot=(0,pi), xrot=(0,pi), zoom=(1,(1/2,3)), square_aspect=('Square Frame', False),
    tachyon=('Ray Tracer', True)):
    xmin, xmax = sage_eval(xrange); ymin, ymax = sage_eval(yrange)
    P = plot3d(f, (x, xmin, xmax), (y, ymin, ymax), color=clr)
    html('<h1>Plot of $f(x,y) = %s$</h1>'%latex(f))
    aspect_ratio = [1,1,1] if square_aspect else [1,1,1/2]
    show(P.rotate((0,0,1), -zrot).rotate((1,0,0),xrot), 
         viewer='tachyon' if tachyon else 'jmol', 
         figsize=6, zoom=zoom, frame=False,



Somewhat Silly Egg Painter

by Marshall Hampton (refereed by William Stein)

g(s) = ((0.57496*sqrt(121 - 16.0*s^2))/sqrt(10.+ s))
def P(color, rng):
    return parametric_plot3d((cos(t)*g(s), sin(t)*g(s), s), (s,rng[0],rng[1]), (t,0,2*pi), plot_points = [150,150], rgbcolor=color, frame = False, opacity = 1)
colorlist = ['red','blue','red','blue']
def _(band_number = selector(range(1,5)), current_color = Color('red')):
    html('<h1 align=center>Egg Painter</h1>')
    colorlist[band_number-1] = current_color
    egg = sum([P(colorlist[i],[-2.75+5.5*(i/4),-2.75+5.5*(i+1)/4]) for i in range(4)])


interact (last edited 2021-08-23 15:58:42 by anewton)