1254
Comment:

1552

Deletions are marked like this.  Additions are marked like this. 
Line 27:  Line 27: 
=== Illustrating of the prime number thoerem === {{{ @interact def _(N=(100,(2..2000))): html("<font color='red'>$\pi(x)$</font> and <font color='blue'>$x/(\log(x)1)$</font> for $x < %s$"%N) show(plot(prime_pi, 0, N, rgbcolor='red') + plot(x/(log(x)1), 5, N, rgbcolor='blue')) }}} 
Sage Interactions
Post code that demonstrates the use of the interact command in Sage here. It should be easy for people to just scroll through and paste examples out of here into their own sage notebooks.
We'll likely restructure and reorganize this once we have some nontrivial content and get a sense of how it is laid out.
Graphics
Calculus
A contour map and 3d plot of two inverse distance functions
@interact def _(q1=(1,(3,3)), q2=(2,(3,3)), cmap=['autumn', 'bone', 'cool', 'copper', 'gray', 'hot', 'hsv', 'jet', 'pink', 'prism', 'spring', 'summer', 'winter']): x,y = var('x,y') f = q1/sqrt((x+1)^2 + y^2) + q2/sqrt((x1)^2+(y+0.5)^2) C = contour_plot(f, (2,2), (2,2), plot_points=30, contours=15, cmap=cmap) show(C, figsize=3, aspect_ratio=1) show(plot3d(f, (x,2,2), (y,2,2)), figsize=5, viewer='tachyon')
attachment:mountains.png
Number Theory
Illustrating of the prime number thoerem
@interact def _(N=(100,(2..2000))): html("<font color='red'>$\pi(x)$</font> and <font color='blue'>$x/(\log(x)1)$</font> for $x < %s$"%N) show(plot(prime_pi, 0, N, rgbcolor='red') + plot(x/(log(x)1), 5, N, rgbcolor='blue'))
Computing the cuspidal subgroup
html('<h1>Cuspidal Subgroups of Modular Jacobians J0(N)</h1>') @interact def _(N=selector([1..8*13], ncols=8, width=10, default=10)): A = J0(N) print A.cuspidal_subgroup()
attachment:cuspgroup.png