Differences between revisions 104 and 105
Revision 104 as of 2008-05-08 09:48:26
Size: 730
Editor: schilly
Comment:
Revision 105 as of 2008-05-08 09:52:42
Size: 1513
Editor: schilly
Comment:
Deletions are marked like this. Additions are marked like this.
Line 2: Line 2:
Post code that demonstrates the use of the interact command in Sage here. It should be easy to just scroll through and paste examples out of here into their own sage notebooks.If you have suggestions on how to improve interact, add them [:interactSuggestions:here] or email [email protected] .
Line 3: Line 4:
Post code that demonstrates the use of the interact command in Sage here. It should be easy to just scroll through and paste examples out of here into their own sage notebooks.If you have suggestions on how to improve interact, add them [:interactSuggestions: here] or email [email protected]

 * [:interact/graph_theory:Graph Theory]
 * [:interact/graph theory:Graph Theory]
Line 8: Line 7:
 * [:interact/linear_algebra:Linear Algebra]  * [:interact/linear algebra:Linear Algebra]
Line 10: Line 9:
 * [:interact/number_theory:Number Theory]  * [:interact/number theory:Number Theory]
Line 15: Line 14:


== Example: Taylor Series ==

This is the code and a mockup animation of the interact command. It defines a slider, seen on top, that can be dragged. Once dragged, it changes the value of the variable "order" and the whole block of code gets evaluated. This principle can be seen in various examples presented on the pages above!

{{{
var('x')
x0 = 0
f = sin(x)*e^(-x)
p = plot(f,-1,5, thickness=2)
dot = point((x0,f(x0)),pointsize=80,rgbcolor=(1,0,0))
@interact
def _(order=(1..12)):
  ft = f.taylor(x,x0,order)
  pt = plot(ft,-1, 5, color='green', thickness=2)
  html('$f(x)\;=\;%s$'%latex(f))
  html('$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$'%(x0,latex(ft),order+1))
  show(dot + p + pt, ymin = -.5, ymax = 1)
}}}
attachment:taylor_series_animated.gif

Sage Interactions

Post code that demonstrates the use of the interact command in Sage here. It should be easy to just scroll through and paste examples out of here into their own sage notebooks.If you have suggestions on how to improve interact, add them [:interactSuggestions:here] or email [email protected] .

  • [:interact/graph theory:Graph Theory]
  • [:interact/calculus:Calculus]
  • [:interact/diffeq:Differential Equations]
  • [:interact/linear algebra:Linear Algebra]
  • [:interact/algebra:Algebra]
  • [:interact/number theory:Number Theory]
  • [:interact/web:Web Applications]
  • [:interact/bio:Bioinformatics]
  • [:interact/graphics:Drawing Graphics]
  • [:interact/misc:Miscellaneous]

Example: Taylor Series

This is the code and a mockup animation of the interact command. It defines a slider, seen on top, that can be dragged. Once dragged, it changes the value of the variable "order" and the whole block of code gets evaluated. This principle can be seen in various examples presented on the pages above!

var('x')
x0  = 0
f   = sin(x)*e^(-x)
p   = plot(f,-1,5, thickness=2)
dot = point((x0,f(x0)),pointsize=80,rgbcolor=(1,0,0))
@interact
def _(order=(1..12)):
  ft = f.taylor(x,x0,order)
  pt = plot(ft,-1, 5, color='green', thickness=2)
  html('$f(x)\;=\;%s$'%latex(f))
  html('$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$'%(x0,latex(ft),order+1))
  show(dot + p + pt, ymin = -.5, ymax = 1)

attachment:taylor_series_animated.gif

interact (last edited 2020-06-02 15:23:26 by kcrisman)