Differences between revisions 1 and 105 (spanning 104 versions)
Revision 1 as of 2008-03-11 18:14:23
Size: 505
Editor: was
Comment:
Revision 105 as of 2008-05-08 09:52:42
Size: 1513
Editor: schilly
Comment:
Deletions are marked like this. Additions are marked like this.
Line 2: Line 2:
Post code that demonstrates the use of the interact command in Sage here. It should be easy to just scroll through and paste examples out of here into their own sage notebooks.If you have suggestions on how to improve interact, add them [:interactSuggestions:here] or email [email protected] .
Line 3: Line 4:
Post code (and screen shots) of the use of interact in Sage here. We'll likely restructure and reorganize this, or move it out of the wiki (?) once we have some nontrivial content and get a sense of how it is laid out.  * [:interact/graph theory:Graph Theory]
 * [:interact/calculus:Calculus]
 * [:interact/diffeq:Differential Equations]
 * [:interact/linear algebra:Linear Algebra]
 * [:interact/algebra:Algebra]
 * [:interact/number theory:Number Theory]
 * [:interact/web:Web Applications]
 * [:interact/bio:Bioinformatics]
 * [:interact/graphics:Drawing Graphics]
 * [:interact/misc:Miscellaneous]
Line 5: Line 15:
== Graphics ==
Line 7: Line 16:
== Calculus == == Example: Taylor Series ==
Line 9: Line 18:
== Number Theory == This is the code and a mockup animation of the interact command. It defines a slider, seen on top, that can be dragged. Once dragged, it changes the value of the variable "order" and the whole block of code gets evaluated. This principle can be seen in various examples presented on the pages above!
Line 12: Line 21:
html('<h1>Cuspidal Subgroups of Modular Jacobians J0(N)</h1>') var('x')
x0 = 0
f = sin(x)*e^(-x)
p = plot(f,-1,5, thickness=2)
dot = point((x0,f(x0)),pointsize=80,rgbcolor=(1,0,0))
Line 14: Line 27:
def _(N=selector([1..8*13], ncols=8, width=10, default=10)):
    A = J0(N)
    print A.cuspidal_subgroup()
def _(order=(1..12)):
  ft = f.taylor(x,x0,order)
  pt = plot(ft,-1, 5, color='green', thickness=2)
  html('$f(x)\;=\;%s$'%latex(f))
  html('$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$'%(x0,latex(ft),order+1))
  show(dot + p + pt, ymin = -.5, ymax = 1)
Line 18: Line 34:
attachment:taylor_series_animated.gif

Sage Interactions

Post code that demonstrates the use of the interact command in Sage here. It should be easy to just scroll through and paste examples out of here into their own sage notebooks.If you have suggestions on how to improve interact, add them [:interactSuggestions:here] or email [email protected] .

  • [:interact/graph theory:Graph Theory]
  • [:interact/calculus:Calculus]
  • [:interact/diffeq:Differential Equations]
  • [:interact/linear algebra:Linear Algebra]
  • [:interact/algebra:Algebra]
  • [:interact/number theory:Number Theory]
  • [:interact/web:Web Applications]
  • [:interact/bio:Bioinformatics]
  • [:interact/graphics:Drawing Graphics]
  • [:interact/misc:Miscellaneous]

Example: Taylor Series

This is the code and a mockup animation of the interact command. It defines a slider, seen on top, that can be dragged. Once dragged, it changes the value of the variable "order" and the whole block of code gets evaluated. This principle can be seen in various examples presented on the pages above!

var('x')
x0  = 0
f   = sin(x)*e^(-x)
p   = plot(f,-1,5, thickness=2)
dot = point((x0,f(x0)),pointsize=80,rgbcolor=(1,0,0))
@interact
def _(order=(1..12)):
  ft = f.taylor(x,x0,order)
  pt = plot(ft,-1, 5, color='green', thickness=2)
  html('$f(x)\;=\;%s$'%latex(f))
  html('$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$'%(x0,latex(ft),order+1))
  show(dot + p + pt, ymin = -.5, ymax = 1)

attachment:taylor_series_animated.gif

interact (last edited 2021-08-23 15:58:42 by anewton)