Differences between revisions 1 and 100 (spanning 99 versions)
Revision 1 as of 2008-03-11 18:14:23
Size: 505
Editor: was
Comment:
Revision 100 as of 2008-05-07 13:46:16
Size: 18586
Editor: schilly
Comment:
Deletions are marked like this. Additions are marked like this.
Line 3: Line 3:
Post code (and screen shots) of the use of interact in Sage here. We'll likely restructure and reorganize this, or move it out of the wiki (?) once we have some nontrivial content and get a sense of how it is laid out.

== Graphics ==

== Calculus ==

== Number Theory ==

{{{
html('<h1>Cuspidal Subgroups of Modular Jacobians J0(N)</h1>')
@interact
def _(N=selector([1..8*13], ncols=8, width=10, default=10)):
    A = J0(N)
    print A.cuspidal_subgroup()
}}}
Post code that demonstrates the use of the interact command in Sage here. It should be easy to just scroll through and paste examples out of here into their own sage notebooks.If you have suggestions on how to improve interact, add them [:interactSuggestions: here] or email [email protected]

 * [:interact/graph_theory:Graph Theory]
 * [:interact/calculus:Calculus]
 * [:interact/diffeq:Differential Equations]
 * [:interact/linear_algebra:Linear Algebra]
 * [:interact/algebra:Algebra]
 * [:interact/number_theory:Number Theory]

== Web applications ==

=== Stock Market data, fetched from Yahoo and Google ===
by William Stein

{{{
import urllib

class Day:
    def __init__(self, date, open, high, low, close, volume):
        self.date = date
        self.open=float(open); self.high=float(high); self.low=float(low); self.close=float(close)
        self.volume=int(volume)
    def __repr__(self):
        return '%10s %4.2f %4.2f %4.2f %4.2f %10d'%(self.date, self.open, self.high,
                   self.low, self.close, self.volume)

class Stock:
    def __init__(self, symbol):
        self.symbol = symbol.upper()

    def __repr__(self):
        return "%s (%s)"%(self.symbol, self.yahoo()['price'])
    
    def yahoo(self):
        url = 'http://finance.yahoo.com/d/quotes.csv?s=%s&f=%s' % (self.symbol, 'l1c1va2xj1b4j4dyekjm3m4rr5p5p6s7')
        values = urllib.urlopen(url).read().strip().strip('"').split(',')
        data = {}
        data['price'] = values[0]
        data['change'] = values[1]
        data['volume'] = values[2]
        data['avg_daily_volume'] = values[3]
        data['stock_exchange'] = values[4]
        data['market_cap'] = values[5]
        data['book_value'] = values[6]
        data['ebitda'] = values[7]
        data['dividend_per_share'] = values[8]
        data['dividend_yield'] = values[9]
        data['earnings_per_share'] = values[10]
        data['52_week_high'] = values[11]
        data['52_week_low'] = values[12]
        data['50day_moving_avg'] = values[13]
        data['200day_moving_avg'] = values[14]
        data['price_earnings_ratio'] = values[15]
        data['price_earnings_growth_ratio'] = values[16]
        data['price_sales_ratio'] = values[17]
        data['price_book_ratio'] = values[18]
        data['short_ratio'] = values[19]
        return data

    def historical(self):
        try:
            return self.__historical
        except AttributeError:
            pass
        symbol = self.symbol
        def get_data(exchange):
             name = get_remote_file('http://finance.google.com/finance/historical?q=%s:%s&output=csv'%(exchange, symbol.upper()),
                       verbose=False)
             return open(name).read()
        R = get_data('NASDAQ')
        if "Bad Request" in R:
             R = get_data("NYSE")
        R = R.splitlines()
        headings = R[0].split(',')
        self.__historical = []
        try:
            for x in reversed(R[1:]):
                date, opn, high, low, close, volume = x.split(',')
                self.__historical.append(Day(date, opn,high,low,close,volume))
        except ValueError:
             pass
        self.__historical = Sequence(self.__historical,cr=True,universe=lambda x:x)
        return self.__historical

    def plot_average(self, spline_samples=10):
        d = self.historical()
        if len(d) == 0:
            return text('no historical data at Google Finance about %s'%self.symbol, (0,3))
        avg = list(enumerate([(z.high+z.low)/2 for z in d]))
        P = line(avg) + points(avg, rgbcolor='black', pointsize=4) + \
                 text(self.symbol, (len(d)*1.05, d[-1].low), horizontal_alignment='right', rgbcolor='black')
        if spline_samples > 0:
            k = 250//spline_samples
            spl = spline([avg[i*k] for i in range(len(d)//k)] + [avg[-1]])
            P += plot(spl, (0,len(d)+30), color=(0.7,0.7,0.7))
        P.xmax(260)
        return P

    def plot_diff(self):
        d = self.historical()
        if len(d) == 0:
            return text('no historical data at Google Finance about %s'%self.symbol, (0,3))
        diff = []
        for i in range(1, len(d)):
             z1 = d[i]; z0 = d[i-1]
             diff.append((i, (z1.high+z1.low)/2 - (z0.high + z0.low)/2))
        P = line(diff,thickness=0.5) + points(diff, rgbcolor='black', pointsize=4) + \
                 text(self.symbol, (len(d)*1.05, 0), horizontal_alignment='right', rgbcolor='black')
        P.xmax(260)
        return P

symbols = ['bsc', 'vmw', 'sbux', 'aapl', 'amzn', 'goog', 'wfmi', 'msft', 'yhoo', 'ebay', 'java', 'rht', ]; symbols.sort()
stocks = dict([(s,Stock(s)) for s in symbols])

@interact
def data(symbol = symbols, other_symbol='', spline_samples=(8,[0..15])):
     if other_symbol != '':
         symbol = other_symbol
     S = Stock(symbol)
     html('<h1 align=center><font color="darkred">%s</font></h1>'%S)
     S.plot_average(spline_samples).save('avg.png', figsize=[10,2])
     S.plot_diff().save('diff.png', figsize=[10,2])

     Y = S.yahoo()
     k = Y.keys(); k.sort()
     html('Price during last 52 weeks:<br>Grey line is a spline through %s points (do not take seriously!):<br> <img src="cell://avg.png">'%spline_samples)
     html('Difference from previous day:<br> <img src="cell://diff.png">')
     html('<table align=center>' + '\n'.join('<tr><td>%s</td><td>%s</td></tr>'%(k[i], Y[k[i]]) for i in range(len(k))) + '</table>')

}}}

attachment:stocks.png

=== CO2 data plot, fetched from NOAA ===
by Marshall Hampton

While support for R is rapidly improving, scipy.stats has a lot of useful stuff too. This only scratches the surface.
{{{
import urllib2 as U
import scipy.stats as Stat
co2data = U.urlopen('ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt').readlines()
datalines = []
for a_line in co2data:
    if a_line.find('Creation:') != -1:
        cdate = a_line
    if a_line[0] != '#':
        temp = a_line.replace('\n','').split(' ')
        temp = [float(q) for q in temp if q != '']
        datalines.append(temp)
trdf = RealField(16)
@interact
def mauna_loa_co2(start_date = slider(1958,2010,1,1958), end_date = slider(1958, 2010,1,2009)):
    htmls1 = '<h3>CO2 monthly averages at Mauna Loa (interpolated), from NOAA/ESRL data</h3>'
    htmls2 = '<h4>'+cdate+'</h4>'
    sel_data = [[q[2],q[4]] for q in datalines if start_date < q[2] < end_date]
    c_max = max([q[1] for q in sel_data])
    c_min = min([q[1] for q in sel_data])
    slope, intercept, r, ttprob, stderr = Stat.linregress(sel_data)
    html(htmls1+htmls2+'<h4>Linear regression slope: ' + str(trdf(slope)) + ' ppm/year; correlation coefficient: ' + str(trdf(r)) + '</h4>')
    var('x,y')
    show(list_plot(sel_data, plotjoined=True, rgbcolor=(1,0,0)) + plot(slope*x+intercept,start_date,end_date), xmin = start_date, ymin = c_min-2, axes = True, xmax = end_date, ymax = c_max+3, frame = False)
}}}
attachment:co2c.png

=== Pie Chart from the Google Chart API ===
by Harald Schilly

{{{
# Google Chart API: http://code.google.com/apis/chart
import urllib2 as inet
from pylab import imshow
@interact
def gChart(title="Google Chart API plots Pie Charts!", color1=Color('purple'), color2=Color('black'), color3=Color('yellow'), val1=slider(0,1,.05,.5), val2=slider(0,1,.05,.3), val3=slider(0,1,.05,0.1), label=("Maths Physics Chemistry")):
    url = "http://chart.apis.google.com/chart?cht=p3&chs=600x300"
    url += '&chtt=%s&chts=000000,25'%title.replace(" ","+")
    url += '&chco=%s'%(','.join([color1.html_color()[1:],color2.html_color()[1:],color3.html_color()[1:]]))
    url += '&chl=%s'%label.replace(" ","|")
    url += '&chd=t:%s'%(','.join(map(str,[val1,val2,val3])))
    print url
    html('<div style="border:3px dashed;text-align:center;padding:50px 0 50px 0"><img src="%s"></div>'%url)
}}}
attachment:interact_with_google_chart_api.png



== Bioinformatics ==

=== Web app: protein browser ===
by Marshall Hampton (tested by William Stein)
{{{
import urllib2 as U
@interact
def protein_browser(GenBank_ID = input_box('165940577', type = str), file_type = selector([(1,'fasta'),(2,'GenPept')])):
    if file_type == 2:
        gen_str = 'http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&sendto=t&id='
    else:
        gen_str = 'http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&sendto=t&dopt=fasta&id='
    f = U.urlopen(gen_str + GenBank_ID)
    g = f.read()
    f.close()
    html(g)
}}}
attachment:biobrowse.png

=== Coalescent simulator ===
by Marshall Hampton
{{{
def next_gen(x, selection=1.0):
    '''Creates the next generation from the previous; also returns parent-child indexing list'''
    next_x = []
    for ind in range(len(x)):
        if random() < (1 + selection)/len(x):
            rind = 0
        else:
            rind = int(round(random()*(len(x)-1)+1/2))
        next_x.append((x[rind],rind))
    next_x.sort()
    return [[x[0] for x in next_x],[x[1] for x in next_x]]
def coal_plot(some_data):
    '''Creates a graphics object from coalescent data'''
    gens = some_data[0]
    inds = some_data[1]
    gen_lines = line([[0,0]])
    pts = Graphics()
    ngens = len(gens)
    gen_size = len(gens[0])
    for x in range(gen_size):
        pts += point((x,ngens-1), hue = gens[0][x]/float(gen_size*1.1))
    p_frame = line([[-.5,-.5],[-.5,ngens-.5], [gen_size-.5,ngens-.5], [gen_size-.5,-.5], [-.5,-.5]])
    for g in range(1,ngens):
        for x in range(gen_size):
            old_x = inds[g-1][x]
            gen_lines += line([[x,ngens-g-1],[old_x,ngens-g]], hue = gens[g-1][old_x]/float(gen_size*1.1))
            pts += point((x,ngens-g-1), hue = gens[g][x]/float(gen_size*1.1))
    return pts+gen_lines+p_frame
d_field = RealField(10)
@interact
def coalescents(pop_size = slider(2,100,1,15,'Population size'), selection = slider(-1,1,.1,0, 'Selection for first taxon'), s = selector(['Again!'], label='Refresh', buttons=True)):
    print 'Population size: ' + str(pop_size)
    print 'Selection coefficient for first taxon: ' + str(d_field(selection))
    start = [i for i in range(pop_size)]
    gens = [start]
    inds = []
    while gens[-1][0] != gens[-1][-1]:
        g_index = len(gens) - 1
        n_gen = next_gen(gens[g_index], selection = selection)
        gens.append(n_gen[0])
        inds.append(n_gen[1])
        coal_data1 = [gens,inds]
    print 'Generations until coalescence: ' + str(len(gens))
    show(coal_plot(coal_data1), axes = False, figsize = [8,4.0*len(gens)/pop_size], ymax = len(gens)-1)
}}}
attachment:coalescent.png

== Miscellaneous Graphics ==

=== Catalog of 3D Parametric Plots ===
{{{
var('u,v')
plots = ['Two Interlinked Tori', 'Star of David', 'Double Heart',
         'Heart', 'Green bowtie', "Boy's Surface", "Maeder's Owl",
         'Cross cap']
plots.sort()

@interact
def _(example=selector(plots, buttons=True, nrows=2),
      tachyon=("Raytrace", False), frame = ('Frame', False),
      opacity=(1,(0.1,1))):
    url = ''
    if example == 'Two Interlinked Tori':
        f1 = (4+(3+cos(v))*sin(u), 4+(3+cos(v))*cos(u), 4+sin(v))
        f2 = (8+(3+cos(v))*cos(u), 3+sin(v), 4+(3+cos(v))*sin(u))
        p1 = parametric_plot3d(f1, (u,0,2*pi), (v,0,2*pi), color="red", opacity=opacity)
        p2 = parametric_plot3d(f2, (u,0,2*pi), (v,0,2*pi), color="blue",opacity=opacity)
        P = p1 + p2
    elif example == 'Star of David':
        f_x = cos(u)*cos(v)*(abs(cos(3*v/4))^500 + abs(sin(3*v/4))^500)^(-1/260)*(abs(cos(4*u/4))^200 + abs(sin(4*u/4))^200)^(-1/200)
        f_y = cos(u)*sin(v)*(abs(cos(3*v/4))^500 + abs(sin(3*v/4))^500)^(-1/260)*(abs(cos(4*u/4))^200 + abs(sin(4*u/4))^200)^(-1/200)
        f_z = sin(u)*(abs(cos(4*u/4))^200 + abs(sin(4*u/4))^200)^(-1/200)
        P = parametric_plot3d([f_x, f_y, f_z], (u, -pi, pi), (v, 0, 2*pi),opacity=opacity)
    elif example == 'Double Heart':
        f_x = ( abs(v) - abs(u) - abs(tanh((1/sqrt(2))*u)/(1/sqrt(2))) + abs(tanh((1/sqrt(2))*v)/(1/sqrt(2))) )*sin(v)
        f_y = ( abs(v) - abs(u) - abs(tanh((1/sqrt(2))*u)/(1/sqrt(2))) - abs(tanh((1/sqrt(2))*v)/(1/sqrt(2))) )*cos(v)
        f_z = sin(u)*(abs(cos(4*u/4))^1 + abs(sin(4*u/4))^1)^(-1/1)
        P = parametric_plot3d([f_x, f_y, f_z], (u, 0, pi), (v, -pi, pi),opacity=opacity)
    elif example == 'Heart':
        f_x = cos(u)*(4*sqrt(1-v^2)*sin(abs(u))^abs(u))
        f_y = sin(u) *(4*sqrt(1-v^2)*sin(abs(u))^abs(u))
        f_z = v
        P = parametric_plot3d([f_x, f_y, f_z], (u, -pi, pi), (v, -1, 1), frame=False, color="red",opacity=opacity)
    elif example == 'Green bowtie':
        f_x = sin(u) / (sqrt(2) + sin(v))
        f_y = sin(u) / (sqrt(2) + cos(v))
        f_z = cos(u) / (1 + sqrt(2))
        P = parametric_plot3d([f_x, f_y, f_z], (u, -pi, pi), (v, -pi, pi), frame=False, color="green",opacity=opacity)
    elif example == "Boy's Surface":
        url = "http://en.wikipedia.org/wiki/Boy's_surface"
        fx = 2/3* (cos(u)* cos(2*v) + sqrt(2)* sin(u)* cos(v))* cos(u) / (sqrt(2) - sin(2*u)* sin(3*v))
        fy = 2/3* (cos(u)* sin(2*v) - sqrt(2)* sin(u)* sin(v))* cos(u) / (sqrt(2) - sin(2*u)* sin(3*v))
        fz = sqrt(2)* cos(u)* cos(u) / (sqrt(2) - sin(2*u)* sin(3*v))
        P = parametric_plot3d([fx, fy, fz], (u, -2*pi, 2*pi), (v, 0, pi), plot_points = [90,90], frame=False, color="orange",opacity=opacity)
    elif example == "Maeder's Owl":
        fx = v *cos(u) - 0.5* v^2 * cos(2* u)
        fy = -v *sin(u) - 0.5* v^2 * sin(2* u)
        fz = 4 *v^1.5 * cos(3 *u / 2) / 3
        P = parametric_plot3d([fx, fy, fz], (u, -2*pi, 2*pi), (v, 0, 1),plot_points = [90,90], frame=False, color="purple",opacity=opacity)
    elif example =='Cross cap':
        url = 'http://en.wikipedia.org/wiki/Cross-cap'
        fx = (1+cos(v))*cos(u)
        fy = (1+cos(v))*sin(u)
        fz = -tanh((2/3)*(u-pi))*sin(v)
        P = parametric_plot3d([fx, fy, fz], (u, 0, 2*pi), (v, 0, 2*pi), frame=False, color="red",opacity=opacity)
    else:
        print "Bug selecting plot?"
        return


    html('<h2>%s</h2>'%example)
    if url:
        html('<h3><a target="_new" href="%s">%s</a></h3>'%(url,url))
    show(P, viewer='tachyon' if tachyon else 'jmol', frame=frame)
}}}

attachment:parametricplot3d.png

=== Interactive rotatable raytracing with Tachyon3d ===

{{{
C = cube(color=['red', 'green', 'blue'], aspect_ratio=[1,1,1],
         viewer='tachyon') + sphere((1,0,0),0.2)
@interact
def example(theta=(0,2*pi), phi=(0,2*pi), zoom=(1,(1,4))):
    show(C.rotate((0,0,1), theta).rotate((0,1,0),phi), zoom=zoom)
}}}


attachment:tachyonrotate.png


=== Interactive 3d plotting ===
{{{
var('x,y')
@interact
def example(clr=Color('orange'), f=4*x*exp(-x^2-y^2), xrange='(-2, 2)', yrange='(-2,2)',
    zrot=(0,pi), xrot=(0,pi), zoom=(1,(1/2,3)), square_aspect=('Square Frame', False),
    tachyon=('Ray Tracer', True)):
    xmin, xmax = sage_eval(xrange); ymin, ymax = sage_eval(yrange)
    P = plot3d(f, (x, xmin, xmax), (y, ymin, ymax), color=clr)
    html('<h1>Plot of $f(x,y) = %s$</h1>'%latex(f))
    aspect_ratio = [1,1,1] if square_aspect else [1,1,1/2]
    show(P.rotate((0,0,1), -zrot).rotate((1,0,0),xrot),
         viewer='tachyon' if tachyon else 'jmol',
         figsize=6, zoom=zoom, frame=False,
         frame_aspect_ratio=aspect_ratio)
}}}


attachment:tachyonplot3d.png

[[Anchor(eggpaint)]]

=== Somewhat Silly Egg Painter ===
by Marshall Hampton (refereed by William Stein)
{{{
var('s,t')
g(s) = ((0.57496*sqrt(121 - 16.0*s^2))/sqrt(10.+ s))
def P(color, rng):
    return parametric_plot3d((cos(t)*g(s), sin(t)*g(s), s), (s,rng[0],rng[1]), (t,0,2*pi), plot_points = [150,150], rgbcolor=color, frame = False, opacity = 1)
colorlist = ['red','blue','red','blue']
@interact
def _(band_number = selector(range(1,5)), current_color = Color('red')):
    html('<h1 align=center>Egg Painter</h1>')
    colorlist[band_number-1] = current_color
    egg = sum([P(colorlist[i],[-2.75+5.5*(i/4),-2.75+5.5*(i+1)/4]) for i in range(4)])
    show(egg)
}}}
attachment:eggpaint.png

== Miscellaneous ==

== Profile a snippet of code ==
{{{
html('<h2>Profile the given input</h2>')
import cProfile; import profile
@interact
def _(cmd = ("Statement", '2 + 2'),
      do_preparse=("Preparse?", True), cprof =("cProfile?", False)):
    if do_preparse: cmd = preparse(cmd)
    print "<html>" # trick to avoid word wrap
    if cprof:
        cProfile.run(cmd)
    else:
        profile.run(cmd)
    print "</html>"
}}}
attachment:profile.png


=== Evaluate a bit of code in a given system ===

by William Stein (there is no way yet to make the text box big):
{{{
@interact
def _(system=selector([('sage0', 'Sage'), ('gp', 'PARI'), ('magma', 'Magma')]), code='2+2'):
    print globals()[system].eval(code)
}}}

attachment:evalsys.png

=== A Random Walk ===

by William Stein

{{{
html('<h1>A Random Walk</h1>')
vv = []; nn = 0
@interact
def foo(pts = checkbox(True, "Show points"),
        refresh = checkbox(False, "New random walk every time"),
        steps = (50,(10..500))):
    # We cache the walk in the global variable vv, so that
    # checking or unchecking the points checkbox doesn't change
    # the random walk.
    html("<h2>%s steps</h2>"%steps)
    global vv
    if refresh or len(vv) == 0:
        s = 0; v = [(0,0)]
        for i in range(steps):
             s += random() - 0.5
             v.append((i, s))
        vv = v
    elif len(vv) != steps:
        # Add or subtract some points
        s = vv[-1][1]; j = len(vv)
        for i in range(steps - len(vv)):
            s += random() - 0.5
            vv.append((i+j,s))
        v = vv[:steps]
    else:
        v = vv
    L = line(v, rgbcolor='#4a8de2')
    if pts: L += points(v, pointsize=10, rgbcolor='red')
    show(L, xmin=0, figsize=[8,3])
}}}
attachment:randomwalk.png

=== 3D Random Walk ===
{{{
@interact
def rwalk3d(n=(50,1000), frame=True):
    pnt = [0,0,0]
    v = [copy(pnt)]
    for i in range(n):
        pnt[0] += random()-0.5
        pnt[1] += random()-0.5
        pnt[2] += random()-0.5
        v.append(copy(pnt))
    show(line3d(v,color='black'),aspect_ratio=[1,1,1],frame=frame)
}}}
attachment:randomwalk3d.png

Sage Interactions

Post code that demonstrates the use of the interact command in Sage here. It should be easy to just scroll through and paste examples out of here into their own sage notebooks.If you have suggestions on how to improve interact, add them [:interactSuggestions: here] or email [email protected].

  • [:interact/graph_theory:Graph Theory]
  • [:interact/calculus:Calculus]
  • [:interact/diffeq:Differential Equations]
  • [:interact/linear_algebra:Linear Algebra]
  • [:interact/algebra:Algebra]
  • [:interact/number_theory:Number Theory]

Web applications

Stock Market data, fetched from Yahoo and Google

by William Stein

import urllib

class Day:
    def __init__(self, date, open, high, low, close, volume):
        self.date = date
        self.open=float(open); self.high=float(high); self.low=float(low); self.close=float(close)
        self.volume=int(volume)
    def __repr__(self):
        return '%10s %4.2f %4.2f %4.2f %4.2f %10d'%(self.date, self.open, self.high, 
                   self.low, self.close, self.volume)

class Stock:
    def __init__(self, symbol):
        self.symbol = symbol.upper()

    def __repr__(self):
        return "%s (%s)"%(self.symbol, self.yahoo()['price'])
    
    def yahoo(self):
        url = 'http://finance.yahoo.com/d/quotes.csv?s=%s&f=%s' % (self.symbol, 'l1c1va2xj1b4j4dyekjm3m4rr5p5p6s7')
        values = urllib.urlopen(url).read().strip().strip('"').split(',')
        data = {}
        data['price'] = values[0]
        data['change'] = values[1]
        data['volume'] = values[2]
        data['avg_daily_volume'] = values[3]
        data['stock_exchange'] = values[4]
        data['market_cap'] = values[5]
        data['book_value'] = values[6]
        data['ebitda'] = values[7]
        data['dividend_per_share'] = values[8]
        data['dividend_yield'] = values[9]
        data['earnings_per_share'] = values[10]
        data['52_week_high'] = values[11]
        data['52_week_low'] = values[12]
        data['50day_moving_avg'] = values[13]
        data['200day_moving_avg'] = values[14]
        data['price_earnings_ratio'] = values[15]
        data['price_earnings_growth_ratio'] = values[16]
        data['price_sales_ratio'] = values[17]
        data['price_book_ratio'] = values[18]
        data['short_ratio'] = values[19]
        return data

    def historical(self):
        try:
            return self.__historical
        except AttributeError:
            pass
        symbol = self.symbol
        def get_data(exchange):
             name = get_remote_file('http://finance.google.com/finance/historical?q=%s:%s&output=csv'%(exchange, symbol.upper()), 
                       verbose=False)
             return open(name).read()
        R = get_data('NASDAQ')
        if "Bad Request" in R:
             R = get_data("NYSE")
        R = R.splitlines()
        headings = R[0].split(',')
        self.__historical = []
        try:
            for x in reversed(R[1:]):
                date, opn, high, low, close, volume = x.split(',')
                self.__historical.append(Day(date, opn,high,low,close,volume))
        except ValueError:
             pass
        self.__historical = Sequence(self.__historical,cr=True,universe=lambda x:x)
        return self.__historical

    def plot_average(self, spline_samples=10):
        d = self.historical()
        if len(d) == 0:
            return text('no historical data at Google Finance about %s'%self.symbol, (0,3))
        avg = list(enumerate([(z.high+z.low)/2 for z in d]))
        P = line(avg) + points(avg, rgbcolor='black', pointsize=4) + \
                 text(self.symbol, (len(d)*1.05, d[-1].low), horizontal_alignment='right', rgbcolor='black')
        if spline_samples > 0:
            k = 250//spline_samples
            spl = spline([avg[i*k] for i in range(len(d)//k)] + [avg[-1]])
            P += plot(spl, (0,len(d)+30), color=(0.7,0.7,0.7))
        P.xmax(260)
        return P

    def plot_diff(self):
        d = self.historical()
        if len(d) == 0:
            return text('no historical data at Google Finance about %s'%self.symbol, (0,3))
        diff = [] 
        for i in range(1, len(d)):
             z1 = d[i]; z0 = d[i-1]
             diff.append((i, (z1.high+z1.low)/2 - (z0.high + z0.low)/2))
        P = line(diff,thickness=0.5) + points(diff, rgbcolor='black', pointsize=4) + \
                 text(self.symbol, (len(d)*1.05, 0), horizontal_alignment='right', rgbcolor='black')
        P.xmax(260)
        return P

symbols = ['bsc', 'vmw', 'sbux', 'aapl', 'amzn', 'goog', 'wfmi', 'msft', 'yhoo', 'ebay', 'java', 'rht', ]; symbols.sort()
stocks = dict([(s,Stock(s)) for s in symbols])

@interact
def data(symbol = symbols, other_symbol='', spline_samples=(8,[0..15])):
     if other_symbol != '':
         symbol = other_symbol
     S = Stock(symbol)
     html('<h1 align=center><font color="darkred">%s</font></h1>'%S)
     S.plot_average(spline_samples).save('avg.png', figsize=[10,2])
     S.plot_diff().save('diff.png', figsize=[10,2])

     Y = S.yahoo()
     k = Y.keys(); k.sort()
     html('Price during last 52 weeks:<br>Grey line is a spline through %s points (do not take seriously!):<br> <img src="cell://avg.png">'%spline_samples)
     html('Difference from previous day:<br> <img src="cell://diff.png">')
     html('<table align=center>' + '\n'.join('<tr><td>%s</td><td>%s</td></tr>'%(k[i], Y[k[i]]) for i in range(len(k))) + '</table>')

attachment:stocks.png

CO2 data plot, fetched from NOAA

by Marshall Hampton

While support for R is rapidly improving, scipy.stats has a lot of useful stuff too. This only scratches the surface.

import urllib2 as U
import scipy.stats as Stat
co2data = U.urlopen('ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt').readlines()
datalines = []
for a_line in co2data:
    if a_line.find('Creation:') != -1:
        cdate = a_line
    if a_line[0] != '#':
        temp = a_line.replace('\n','').split(' ')
        temp = [float(q) for q in temp if q != '']
        datalines.append(temp)
trdf = RealField(16)
@interact
def mauna_loa_co2(start_date = slider(1958,2010,1,1958), end_date = slider(1958, 2010,1,2009)):
    htmls1 = '<h3>CO2 monthly averages at Mauna Loa (interpolated), from NOAA/ESRL data</h3>'
    htmls2 = '<h4>'+cdate+'</h4>'
    sel_data = [[q[2],q[4]] for q in datalines if start_date < q[2] < end_date]
    c_max = max([q[1] for q in sel_data])
    c_min = min([q[1] for q in sel_data])
    slope, intercept, r, ttprob, stderr = Stat.linregress(sel_data)
    html(htmls1+htmls2+'<h4>Linear regression slope: ' + str(trdf(slope)) + ' ppm/year; correlation coefficient: ' + str(trdf(r)) + '</h4>')
    var('x,y')
    show(list_plot(sel_data, plotjoined=True, rgbcolor=(1,0,0)) + plot(slope*x+intercept,start_date,end_date), xmin = start_date, ymin = c_min-2, axes = True, xmax = end_date, ymax = c_max+3, frame = False)

attachment:co2c.png

Pie Chart from the Google Chart API

by Harald Schilly

# Google Chart API: http://code.google.com/apis/chart
import urllib2 as inet
from pylab import imshow
@interact
def gChart(title="Google Chart API plots Pie Charts!", color1=Color('purple'), color2=Color('black'), color3=Color('yellow'), val1=slider(0,1,.05,.5), val2=slider(0,1,.05,.3), val3=slider(0,1,.05,0.1), label=("Maths Physics Chemistry")):
    url = "http://chart.apis.google.com/chart?cht=p3&chs=600x300"
    url += '&chtt=%s&chts=000000,25'%title.replace(" ","+")
    url += '&chco=%s'%(','.join([color1.html_color()[1:],color2.html_color()[1:],color3.html_color()[1:]]))
    url += '&chl=%s'%label.replace(" ","|")
    url += '&chd=t:%s'%(','.join(map(str,[val1,val2,val3])))
    print url
    html('<div style="border:3px dashed;text-align:center;padding:50px 0 50px 0"><img src="%s"></div>'%url)

attachment:interact_with_google_chart_api.png

Bioinformatics

Web app: protein browser

by Marshall Hampton (tested by William Stein)

import urllib2 as U
@interact
def protein_browser(GenBank_ID = input_box('165940577', type = str), file_type = selector([(1,'fasta'),(2,'GenPept')])):
    if file_type == 2:
        gen_str = 'http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&sendto=t&id='
    else:
        gen_str = 'http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&sendto=t&dopt=fasta&id='
    f = U.urlopen(gen_str + GenBank_ID)        
    g = f.read()
    f.close()
    html(g)

attachment:biobrowse.png

Coalescent simulator

by Marshall Hampton

def next_gen(x, selection=1.0):
    '''Creates the next generation from the previous; also returns parent-child indexing list'''
    next_x = []
    for ind in range(len(x)):
        if random() < (1 + selection)/len(x):
            rind = 0
        else:
            rind = int(round(random()*(len(x)-1)+1/2))
        next_x.append((x[rind],rind))
    next_x.sort()
    return [[x[0] for x in next_x],[x[1] for x in next_x]]
def coal_plot(some_data):
    '''Creates a graphics object from coalescent data'''
    gens = some_data[0]
    inds = some_data[1]
    gen_lines = line([[0,0]])
    pts = Graphics()
    ngens = len(gens)
    gen_size = len(gens[0])
    for x in range(gen_size):
        pts += point((x,ngens-1), hue = gens[0][x]/float(gen_size*1.1))
    p_frame = line([[-.5,-.5],[-.5,ngens-.5], [gen_size-.5,ngens-.5], [gen_size-.5,-.5], [-.5,-.5]])
    for g in range(1,ngens):
        for x in range(gen_size):
            old_x = inds[g-1][x]
            gen_lines += line([[x,ngens-g-1],[old_x,ngens-g]], hue = gens[g-1][old_x]/float(gen_size*1.1))
            pts += point((x,ngens-g-1), hue = gens[g][x]/float(gen_size*1.1))
    return pts+gen_lines+p_frame
d_field = RealField(10)
@interact
def coalescents(pop_size = slider(2,100,1,15,'Population size'), selection = slider(-1,1,.1,0, 'Selection for first taxon'), s = selector(['Again!'], label='Refresh', buttons=True)):
    print 'Population size: ' + str(pop_size)
    print 'Selection coefficient for first taxon: ' + str(d_field(selection))
    start = [i for i in range(pop_size)]
    gens = [start]
    inds = []
    while gens[-1][0] != gens[-1][-1]:
        g_index = len(gens) - 1
        n_gen = next_gen(gens[g_index], selection = selection)
        gens.append(n_gen[0])
        inds.append(n_gen[1])
        coal_data1 = [gens,inds]
    print 'Generations until coalescence: ' + str(len(gens))
    show(coal_plot(coal_data1), axes = False, figsize = [8,4.0*len(gens)/pop_size], ymax = len(gens)-1)

attachment:coalescent.png

Miscellaneous Graphics

Catalog of 3D Parametric Plots

var('u,v')
plots = ['Two Interlinked Tori', 'Star of David', 'Double Heart',
         'Heart', 'Green bowtie', "Boy's Surface", "Maeder's Owl",
         'Cross cap']
plots.sort()

@interact
def _(example=selector(plots, buttons=True, nrows=2),
      tachyon=("Raytrace", False), frame = ('Frame', False),
      opacity=(1,(0.1,1))):
    url = ''
    if example == 'Two Interlinked Tori':
        f1 = (4+(3+cos(v))*sin(u), 4+(3+cos(v))*cos(u), 4+sin(v))
        f2 = (8+(3+cos(v))*cos(u), 3+sin(v), 4+(3+cos(v))*sin(u))
        p1 = parametric_plot3d(f1, (u,0,2*pi), (v,0,2*pi), color="red", opacity=opacity)
        p2 = parametric_plot3d(f2, (u,0,2*pi), (v,0,2*pi), color="blue",opacity=opacity)
        P = p1 + p2
    elif example == 'Star of David':
        f_x = cos(u)*cos(v)*(abs(cos(3*v/4))^500 + abs(sin(3*v/4))^500)^(-1/260)*(abs(cos(4*u/4))^200 + abs(sin(4*u/4))^200)^(-1/200)
        f_y = cos(u)*sin(v)*(abs(cos(3*v/4))^500 + abs(sin(3*v/4))^500)^(-1/260)*(abs(cos(4*u/4))^200 + abs(sin(4*u/4))^200)^(-1/200)
        f_z = sin(u)*(abs(cos(4*u/4))^200 + abs(sin(4*u/4))^200)^(-1/200)
        P = parametric_plot3d([f_x, f_y, f_z], (u, -pi, pi), (v, 0, 2*pi),opacity=opacity)
    elif example == 'Double Heart':
        f_x = ( abs(v) - abs(u) - abs(tanh((1/sqrt(2))*u)/(1/sqrt(2))) + abs(tanh((1/sqrt(2))*v)/(1/sqrt(2))) )*sin(v)
        f_y = ( abs(v) - abs(u) - abs(tanh((1/sqrt(2))*u)/(1/sqrt(2))) - abs(tanh((1/sqrt(2))*v)/(1/sqrt(2))) )*cos(v)
        f_z = sin(u)*(abs(cos(4*u/4))^1 + abs(sin(4*u/4))^1)^(-1/1)
        P = parametric_plot3d([f_x, f_y, f_z], (u, 0, pi), (v, -pi, pi),opacity=opacity)
    elif example == 'Heart':
        f_x = cos(u)*(4*sqrt(1-v^2)*sin(abs(u))^abs(u))
        f_y = sin(u) *(4*sqrt(1-v^2)*sin(abs(u))^abs(u))
        f_z = v
        P = parametric_plot3d([f_x, f_y, f_z], (u, -pi, pi), (v, -1, 1), frame=False, color="red",opacity=opacity)
    elif example == 'Green bowtie':
        f_x = sin(u) / (sqrt(2) + sin(v))
        f_y = sin(u) / (sqrt(2) + cos(v))
        f_z = cos(u) / (1 + sqrt(2))
        P = parametric_plot3d([f_x, f_y, f_z], (u, -pi, pi), (v, -pi, pi), frame=False, color="green",opacity=opacity)
    elif example == "Boy's Surface":
        url = "http://en.wikipedia.org/wiki/Boy's_surface"
        fx = 2/3* (cos(u)* cos(2*v) + sqrt(2)* sin(u)* cos(v))* cos(u) / (sqrt(2) - sin(2*u)* sin(3*v))
        fy = 2/3* (cos(u)* sin(2*v) - sqrt(2)* sin(u)* sin(v))* cos(u) / (sqrt(2) - sin(2*u)* sin(3*v))
        fz = sqrt(2)* cos(u)* cos(u) / (sqrt(2) - sin(2*u)* sin(3*v))
        P = parametric_plot3d([fx, fy, fz], (u, -2*pi, 2*pi), (v, 0, pi), plot_points = [90,90], frame=False, color="orange",opacity=opacity) 
    elif example == "Maeder's Owl":
        fx = v *cos(u) - 0.5* v^2 * cos(2* u)
        fy = -v *sin(u) - 0.5* v^2 * sin(2* u)
        fz = 4 *v^1.5 * cos(3 *u / 2) / 3
        P = parametric_plot3d([fx, fy, fz], (u, -2*pi, 2*pi), (v, 0, 1),plot_points = [90,90], frame=False, color="purple",opacity=opacity)
    elif example =='Cross cap':
        url = 'http://en.wikipedia.org/wiki/Cross-cap'
        fx = (1+cos(v))*cos(u)
        fy = (1+cos(v))*sin(u)
        fz = -tanh((2/3)*(u-pi))*sin(v)
        P = parametric_plot3d([fx, fy, fz], (u, 0, 2*pi), (v, 0, 2*pi), frame=False, color="red",opacity=opacity)
    else:
        print "Bug selecting plot?"
        return


    html('<h2>%s</h2>'%example)
    if url:
        html('<h3><a target="_new" href="%s">%s</a></h3>'%(url,url))
    show(P, viewer='tachyon' if tachyon else 'jmol', frame=frame)

attachment:parametricplot3d.png

Interactive rotatable raytracing with Tachyon3d

C = cube(color=['red', 'green', 'blue'], aspect_ratio=[1,1,1],
         viewer='tachyon') + sphere((1,0,0),0.2)
@interact
def example(theta=(0,2*pi), phi=(0,2*pi), zoom=(1,(1,4))):
    show(C.rotate((0,0,1), theta).rotate((0,1,0),phi), zoom=zoom)

attachment:tachyonrotate.png

Interactive 3d plotting

var('x,y')
@interact
def example(clr=Color('orange'), f=4*x*exp(-x^2-y^2), xrange='(-2, 2)', yrange='(-2,2)', 
    zrot=(0,pi), xrot=(0,pi), zoom=(1,(1/2,3)), square_aspect=('Square Frame', False),
    tachyon=('Ray Tracer', True)):
    xmin, xmax = sage_eval(xrange); ymin, ymax = sage_eval(yrange)
    P = plot3d(f, (x, xmin, xmax), (y, ymin, ymax), color=clr)
    html('<h1>Plot of $f(x,y) = %s$</h1>'%latex(f))
    aspect_ratio = [1,1,1] if square_aspect else [1,1,1/2]
    show(P.rotate((0,0,1), -zrot).rotate((1,0,0),xrot), 
         viewer='tachyon' if tachyon else 'jmol', 
         figsize=6, zoom=zoom, frame=False,
         frame_aspect_ratio=aspect_ratio)

attachment:tachyonplot3d.png

Anchor(eggpaint)

Somewhat Silly Egg Painter

by Marshall Hampton (refereed by William Stein)

var('s,t')
g(s) = ((0.57496*sqrt(121 - 16.0*s^2))/sqrt(10.+ s))
def P(color, rng):
    return parametric_plot3d((cos(t)*g(s), sin(t)*g(s), s), (s,rng[0],rng[1]), (t,0,2*pi), plot_points = [150,150], rgbcolor=color, frame = False, opacity = 1)
colorlist = ['red','blue','red','blue']
@interact
def _(band_number = selector(range(1,5)), current_color = Color('red')):
    html('<h1 align=center>Egg Painter</h1>')
    colorlist[band_number-1] = current_color
    egg = sum([P(colorlist[i],[-2.75+5.5*(i/4),-2.75+5.5*(i+1)/4]) for i in range(4)])
    show(egg)

attachment:eggpaint.png

Miscellaneous

Profile a snippet of code

html('<h2>Profile the given input</h2>')
import cProfile; import profile
@interact
def _(cmd = ("Statement", '2 + 2'), 
      do_preparse=("Preparse?", True), cprof =("cProfile?", False)):
    if do_preparse: cmd = preparse(cmd)
    print "<html>"  # trick to avoid word wrap
    if cprof:
        cProfile.run(cmd)
    else:
        profile.run(cmd)
    print "</html>"

attachment:profile.png

Evaluate a bit of code in a given system

by William Stein (there is no way yet to make the text box big):

@interact
def _(system=selector([('sage0', 'Sage'), ('gp', 'PARI'), ('magma', 'Magma')]), code='2+2'):
    print globals()[system].eval(code)

attachment:evalsys.png

A Random Walk

by William Stein

html('<h1>A Random Walk</h1>')
vv = []; nn = 0
@interact
def foo(pts = checkbox(True, "Show points"), 
        refresh = checkbox(False, "New random walk every time"),
        steps = (50,(10..500))):
    # We cache the walk in the global variable vv, so that
    # checking or unchecking the points checkbox doesn't change
    # the random walk. 
    html("<h2>%s steps</h2>"%steps)
    global vv
    if refresh or len(vv) == 0:
        s = 0; v = [(0,0)]
        for i in range(steps): 
             s += random() - 0.5
             v.append((i, s)) 
        vv = v
    elif len(vv) != steps:
        # Add or subtract some points
        s = vv[-1][1]; j = len(vv)
        for i in range(steps - len(vv)):
            s += random() - 0.5
            vv.append((i+j,s))
        v = vv[:steps]
    else:
        v = vv
    L = line(v, rgbcolor='#4a8de2')
    if pts: L += points(v, pointsize=10, rgbcolor='red')
    show(L, xmin=0, figsize=[8,3])

attachment:randomwalk.png

3D Random Walk

@interact
def rwalk3d(n=(50,1000), frame=True):
    pnt = [0,0,0]
    v = [copy(pnt)]
    for i in range(n):
        pnt[0] += random()-0.5
        pnt[1] += random()-0.5
        pnt[2] += random()-0.5
        v.append(copy(pnt))
    show(line3d(v,color='black'),aspect_ratio=[1,1,1],frame=frame)

attachment:randomwalk3d.png

interact (last edited 2021-08-23 15:58:42 by anewton)