Differences between revisions 1 and 16 (spanning 15 versions)
Revision 1 as of 2008-05-08 09:38:48
Size: 7558
Editor: schilly
Comment:
Revision 16 as of 2020-06-01 17:35:10
Size: 10824
Editor: kcrisman
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
= Sage Interactions - Calculus =
goto [:interact:interact main page]

= Web applications =

== Stock Market data, fetched from Yahoo and Google ==
= Sage Interactions - Web applications =
goto [[interact|interact main page]]

<<TableOfContents>>



== CO2 data plot, fetched from NOAA ==
by Marshall Hampton

One can do many things with scipy.stats. This only scratches the surface.
{{{#!sagecell
from scipy.optimize import leastsq
import urllib.request as U
import scipy.stats as Stat
import time
current_year = time.localtime().tm_year
co2bytedata = U.urlopen('ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt').readlines()
co2data = [d.decode() for d in co2bytedata]
datalines = []
for a_line in co2data:
    if a_line.find('Creation:') != -1:
        cdate = a_line
    if a_line[0] != '#':
        temp = a_line.replace('\n','').split(' ')
        temp = [float(q) for q in temp if q != '']
        datalines.append(temp)
npi = RDF(pi)
@interact(layout=[['start_date'],['end_date'],['show_linear_fit','show_nonlinear_fit']])
def mauna_loa_co2(start_date = slider(1958,current_year,1,1958), end_date = slider(1958, current_year,1,current_year-1), show_linear_fit = checkbox(default=True), show_nonlinear_fit = checkbox(default=False)):
    htmls1 = '<h3>CO2 monthly averages at Mauna Loa (interpolated), from NOAA/ESRL data</h3>'
    htmls2 = '<h4>'+cdate+'</h4>'
    pretty_print(html(htmls1+htmls2))
    sel_data = [[q[2],q[4]] for q in datalines if start_date <= q[2] <= end_date]
    outplot = list_plot(sel_data, plotjoined=True, rgbcolor=(1,0,0))
    if show_nonlinear_fit:
        def powerlaw(t,a):
            return sel_data[0][1] + a[0]*(t-sel_data[0][0])^(a[1])
        def res_fun(a):
            return [q[1]-powerlaw(q[0],a) for q in sel_data]
        def fitcos(t,a):
            return a[0]*cos(t*2*npi+a[1])+a[2]*cos(t*4*npi+a[3])
        def res_fun2(a):
            return [q[1]-fitcos(q[0],a) for q in resids]
        a1 = leastsq(res_fun,[1/2.4,1.3])[0]
        resids = [[q[0],q[1] - powerlaw(q[0],a1)] for q in sel_data]
        a2 = leastsq(res_fun2, [3,0,1,0])[0]
        r2_plot = list_plot([[q[0],powerlaw(q[0],a1)+fitcos(q[0],a2)] for q in resids], rgbcolor='green',plotjoined=True)
        outplot = outplot + r2_plot
        var('t')
        formula1 = '%.2f+%.2f(t - %d)^%.2f'%(sel_data[0][1],a1[0],sel_data[0][0],a1[1])
        formula2 = '%.2fcos(2 pi t + %.2f)+%.2f cos(4 pi t + %.2f)'%(a2[0],a2[1],a2[2],a2[3])
        pretty_print(html('Nonlinear fit: <br>%s<br>'%(formula1+'+'+formula2)))
    if show_linear_fit:
        slope, intercept, r, ttprob, stderr = Stat.linregress(sel_data)
        outplot = outplot + plot(slope*x+intercept,start_date,end_date)
        pretty_print(html('Linear regression slope: %.2f ppm/year; correlation coefficient: %.2f'%(slope,r)))
    var('x,y')
    c_max = max([q[1] for q in sel_data])
    c_min = min([q[1] for q in sel_data])
    show(outplot, xmin = start_date, ymin = c_min-2, axes = True, xmax = end_date, ymax = c_max+3, frame = False)
}}}
{{attachment:co2c.png}}

== Arctic sea ice extent data plot, fetched from NSIDC ==
by Marshall Hampton

{{{#!sagecell
import urllib2, csv
months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
longmonths = ['January','February','March','April','May','June','July','August','September','October','November','December']
@interact
def iceplotter(month = selector(zip(range(1,13),longmonths),default = (4, 'April'),label="Month")):
    month_str = months[month-1] + '/N_%02d_area.txt'%(month)
    dialect=csv.excel
    dialect.skipinitialspace = True
    icedata_f = urllib2.urlopen('ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/%s'%month_str)
    cr = csv.reader(icedata_f,delimiter=' ', dialect=dialect)
    icedata = list(cr)
    icedata = [x for x in icedata[1:] if len(x)==6 and N(x[5])>0]
    
    lp = list_plot([[N(x[0]),N(x[4])] for x in icedata])
    
    def lin_regress(xdata, ydata):
        xmean = N(mean(xdata))
        ymean = N(mean(ydata))
        xm = vector(RDF,[q-xmean for q in xdata])
        ym = vector(RDF,[q-ymean for q in ydata])
        xy = xm.inner_product(ym)
        xx = xm.inner_product(xm)
        slope = xy/xx
        intercept = ymean - slope*xmean
        return slope, intercept
    
    years = [N(x[0]) for x in icedata]
    ice = [N(x[4]) for x in icedata]
    slope, inter = lin_regress(years,ice)
    reg = plot(lambda x:slope*x+inter,(min(years),max(years)))
    html('<h3>Extent of Arctic sea ice coverage in %s, %d - %d</h3>'%(longmonths[month-1],min(years),max(years)))
    html('Data from the <a href="http://nsidc.org/">National Snow and Ice Data Center</a>')
    show(lp+reg, figsize = [7,4])
}}}
{{attachment:seaice.png}}

== Pie Chart from the Google Chart API ==
by Harald Schilly

{{{#!sagecell
# Google Chart API: http://code.google.com/apis/chart
import urllib2 as inet
from pylab import imshow
@interact
def gChart(title="Google Chart API plots Pie Charts!", color1=Color('purple'), color2=Color('black'), color3=Color('yellow'), val1=slider(0,1,.05,.5), val2=slider(0,1,.05,.3), val3=slider(0,1,.05,0.1), label=("Maths Physics Chemistry")):
    url = "http://chart.apis.google.com/chart?cht=p3&chs=600x300"
    url += '&chtt=%s&chts=000000,25'%title.replace(" ","+")
    url += '&chco=%s'%(','.join([color1.html_color()[1:],color2.html_color()[1:],color3.html_color()[1:]]))
    url += '&chl=%s'%label.replace(" ","|")
    url += '&chd=t:%s'%(','.join(map(str,[val1,val2,val3])))
    print(url)
    html('<div style="border:3px dashed;text-align:center;padding:50px 0 50px 0"><img src="%s"></div>'%url)
}}}
{{attachment:interact_with_google_chart_api.png}}


== Stock Market data, fetched from Yahoo and Google FIXME ==
Line 9: Line 128:
{{{ (Need to fix plotting warnings as well as some stocks give index errors (like bcc), and Python 3 changes, etc.)

{{{#!sagecell
Line 119: Line 240:
     k = Y.keys(); k.sort()      k = list(Y); k.sort()
Line 126: Line 247:
attachment:stocks.png

== CO2 data plot, fetched from NOAA ==
by Marshall Hampton

While support for R is rapidly improving, scipy.stats has a lot of useful stuff too. This only scratches the surface.
{{{
import urllib2 as U
import scipy.stats as Stat
co2data = U.urlopen('ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt').readlines()
datalines = []
for a_line in co2data:
    if a_line.find('Creation:') != -1:
        cdate = a_line
    if a_line[0] != '#':
        temp = a_line.replace('\n','').split(' ')
        temp = [float(q) for q in temp if q != '']
        datalines.append(temp)
trdf = RealField(16)
@interact
def mauna_loa_co2(start_date = slider(1958,2010,1,1958), end_date = slider(1958, 2010,1,2009)):
    htmls1 = '<h3>CO2 monthly averages at Mauna Loa (interpolated), from NOAA/ESRL data</h3>'
    htmls2 = '<h4>'+cdate+'</h4>'
    sel_data = [[q[2],q[4]] for q in datalines if start_date < q[2] < end_date]
    c_max = max([q[1] for q in sel_data])
    c_min = min([q[1] for q in sel_data])
    slope, intercept, r, ttprob, stderr = Stat.linregress(sel_data)
    html(htmls1+htmls2+'<h4>Linear regression slope: ' + str(trdf(slope)) + ' ppm/year; correlation coefficient: ' + str(trdf(r)) + '</h4>')
    var('x,y')
    show(list_plot(sel_data, plotjoined=True, rgbcolor=(1,0,0)) + plot(slope*x+intercept,start_date,end_date), xmin = start_date, ymin = c_min-2, axes = True, xmax = end_date, ymax = c_max+3, frame = False)
}}}
attachment:co2c.png

== Pie Chart from the Google Chart API ==
by Harald Schilly

{{{
# Google Chart API: http://code.google.com/apis/chart
import urllib2 as inet
from pylab import imshow
@interact
def gChart(title="Google Chart API plots Pie Charts!", color1=Color('purple'), color2=Color('black'), color3=Color('yellow'), val1=slider(0,1,.05,.5), val2=slider(0,1,.05,.3), val3=slider(0,1,.05,0.1), label=("Maths Physics Chemistry")):
    url = "http://chart.apis.google.com/chart?cht=p3&chs=600x300"
    url += '&chtt=%s&chts=000000,25'%title.replace(" ","+")
    url += '&chco=%s'%(','.join([color1.html_color()[1:],color2.html_color()[1:],color3.html_color()[1:]]))
    url += '&chl=%s'%label.replace(" ","|")
    url += '&chd=t:%s'%(','.join(map(str,[val1,val2,val3])))
    print url
    html('<div style="border:3px dashed;text-align:center;padding:50px 0 50px 0"><img src="%s"></div>'%url)
}}}
attachment:interact_with_google_chart_api.png
{{attachment:stocks.png}}

Sage Interactions - Web applications

goto interact main page

CO2 data plot, fetched from NOAA

by Marshall Hampton

One can do many things with scipy.stats. This only scratches the surface.

co2c.png

Arctic sea ice extent data plot, fetched from NSIDC

by Marshall Hampton

seaice.png

Pie Chart from the Google Chart API

by Harald Schilly

interact_with_google_chart_api.png

Stock Market data, fetched from Yahoo and Google FIXME

by William Stein

(Need to fix plotting warnings as well as some stocks give index errors (like bcc), and Python 3 changes, etc.)

stocks.png

interact/web (last edited 2020-06-01 18:37:46 by kcrisman)