Differences between revisions 63 and 64
 ⇤ ← Revision 63 as of 2016-05-09 09:56:58 → Size: 48386 Editor: akhi Comment: ← Revision 64 as of 2019-04-06 06:41:25 → ⇥ Size: 48347 Editor: chapoton Comment: py3 print Deletions are marked like this. Additions are marked like this. Line 115: Line 115: else: print 'NaN' else: print('NaN') Line 140: Line 140: if start < 1 or end <=start: print "invalid start or end value"    if n > end: print "WARNING: n is larger than the end value" if start < 1 or end <=start: print("invalid start or end value")    if n > end: print("WARNING: n is larger than the end value") Line 172: Line 172: #print x_cord, y_cord Line 183: Line 182: #print x, "=x y=", y, " num =", num Line 209: Line 207: print '(to go from x,y coords to an n, reset by setting n=0)' print('(to go from x,y coords to an n, reset by setting n=0)') Line 211: Line 209: #print 'if n =', n, 'then (x,y) =', (x_cord, y_cord)    print '(x,y) =', (x_cord, y_cord), '<=> n =', find_n(x_cord, y_cord, start)    print ' '    print "SW/NE line"    if -y_cord n =', find_n(x_cord, y_cord, start))    print(' ')    print("SW/NE line")    if -y_cord end: print "WARNING: n is greater than end value" if start < 1 or end <=start: print("invalid start or end value")    if n > end: print("WARNING: n is greater than end value") Line 262: Line 259: print 'n =', factor(n) print('n = {}'.format(factor(n))) Line 284: Line 281: print 'Pink Curve: n^2 +', c            print 'Green Curve: n^2 + n +', c2 print('Pink Curve: n^2 +', c)            print('Green Curve: n^2 + n +', c2) Line 312: Line 309: print M; print '\n'*3    print "Computing basis...\n\n" print(M)    print('\n' * 3)    print("Computing basis...\n\n") Line 315: Line 313: print "Space has dimension 0" print("Space has dimension 0") Line 317: Line 315: prec = max(prec, M.dimension()+1) prec = max(prec, M.dimension() + 1) Line 320: Line 318: print "\n\n\nDone computing basis." print("\n\n\nDone computing basis.") Line 333: Line 331: print A.cuspidal_subgroup() print(A.cuspidal_subgroup()) Line 754: Line 752: print "p = %s"%p    show(E.change_ring(GF(p)).plot(),xmin=0,ymin=0) print("p = %s" % p)    show(E.change_ring(GF(p)).plot(), xmin=0, ymin=0) Line 817: Line 815: c = list(continued_fraction(RealField(prec)(number))); print c c = list(continued_fraction(RealField(prec)(number))); print(c) Line 935: Line 933: print u print(u) Line 1004: Line 1002: print u print(u) Line 1010: Line 1008: print "Enter the number of composition" print("Enter the number of composition") Line 1016: Line 1014: print "In each box Enter composition as an array" print("In each box Enter composition as an array") Line 1079: Line 1077: print "zeta(",a[i],")=",zet[i] print("zeta(", a[i], ")=", zet[i]) Line 1081: Line 1079: print "the Intger Relation between the above zeta values given by the vector"  print u print("the Intger Relation between the above zeta values given by the vector")  print(u) Line 1105: Line 1103: print "Composition is ",bintocomp(a) print("Composition is {}".format(bintocomp(a))) Line 1126: Line 1124: print "Word is  ",comptobin(a) print("Word is {}".format(comptobin(a))) Line 1148: Line 1146: print "Dual word is ",dual(a) print("Dual word is {}"?format(dual(a))) Line 1235: Line 1233: print c[1][i],"*",c[0][i] ,"+ ",  print c[1][len(c[0])-1],"*",c[0][len(c[0])-1] print(c[1][i],"*",c[0][i] ,"+ ")  print(c[1][len(c[0])-1],"*",c[0][len(c[0])-1]) Line 1384: Line 1382: c=Regshuf0(a) c = Regshuf0(a) Line 1387: Line 1385: print c[1][i],"*",c[0][i] ,"+ ", print(c[1][i],"*",c[0][i] ,"+ ") Line 1389: Line 1387: print c[1][len(c[0])-1],"*",c[0][len(c[0])-1] print(c[1][len(c[0])-1],"*",c[0][len(c[0])-1]) Line 1537: Line 1535: c=Regshuf1(a) c = Regshuf1(a) Line 1540: Line 1538: print c[1][i],"*",c[0][i] ,"+ ", print(c[1][i],"*",c[0][i] ,"+ ") Line 1542: Line 1540: print c[1][len(c[0])-1],"*",c[0][len(c[0])-1] print(c[1][len(c[0])-1],"*",c[0][len(c[0])-1])

# Integer Factorization

by William Stein

## Factor Trees

by William Stein

More complicated demonstration using Mathematica: http://demonstrations.wolfram.com/FactorTrees/

## Factoring an Integer

by Timothy Clemans

Sage implementation of the Mathematica demonstration of the same name. http://demonstrations.wolfram.com/FactoringAnInteger/

by William Stein

by David Runde

by David Runde

by William Stein

by William Stein

by William Stein

by Emily Kirkman

by Emily Kirkman

by Emily Kirkman

by Emily Kirkman

# Elliptic Curves

## Adding points on an elliptic curve

by David Møller Hansen

# Cryptography

## The Diffie-Hellman Key Exchange Protocol

by Timothy Clemans and William Stein

# Other

by William Stein

## Computing Generalized Bernoulli Numbers

by William Stein (Sage-2.10.3)

by Robert Miller

# Multiple Zeta Values

by Akhilesh P.

## Shuffle Regularization at 1

interact/number_theory (last edited 2020-06-14 09:10:48 by chapoton)