Differences between revisions 12 and 27 (spanning 15 versions)
Revision 12 as of 2009-05-30 17:03:32
Size: 30302
Editor: was
Comment:
Revision 27 as of 2012-05-09 12:58:01
Size: 30437
Editor: chapoton
Comment: removed j in Computing modular forms (fixed)
Deletions are marked like this. Additions are marked like this.
Line 7: Line 7:
{{{ {{{#!sagecell
Line 18: Line 18:
{{{ {{{#!sagecell
Line 72: Line 72:
{{{ {{{#!sagecell
Line 86: Line 86:
{{{ {{{#!sagecell
Line 94: Line 94:
== Prime Spiral - Square == == Prime Spiral - Square FIXME ==
Line 96: Line 96:
{{{ {{{#!sagecell
Line 145: Line 145:
        N = M.copy()         N = copy(M)
Line 233: Line 233:
{{{ {{{#!sagecell
Line 307: Line 307:
{{{
j = 0
{{{#!sagecell
Line 313: Line 312:
    print j; global j; j += 1
Line 330: Line 328:
{{{ {{{#!sagecell
Line 340: Line 338:
== A Charpoly and Hecke Operator Graph == == A Charpoly and Hecke Operator Graph FIXME ==
Line 343: Line 341:
{{{ {{{#!sagecell
Line 364: Line 362:
== Quadratic Residue Table == == Quadratic Residue Table FIXME ==
Line 366: Line 364:
{{{ {{{#!sagecell
Line 417: Line 415:
== Cubic Residue Table == == Cubic Residue Table FIXME ==
Line 419: Line 417:
{{{ {{{#!sagecell
Line 437: Line 435:
    if Mod(a,3)!=0 and Mod(b,3)==0:
        return True
    else:
        return False
    return Mod(a,3)!=0 and Mod(b,3)==0
Line 503: Line 498:
{{{ {{{#!sagecell
Line 552: Line 547:
    S = circle((0,0),1,rgbcolor='yellow')  \
    +
line([e_pt,e_gs_pt], rgbcolor='red', thickness=4) \
    +
line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3) \
    +
line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2) \
    +
point(e_pt,pointsize=50, rgbcolor='red')  \
    +
point(f_pt,pointsize=50, rgbcolor='blue') \
    +
point(ef_pt,pointsize=50,rgbcolor='purple') \
    +
point(f_gs_pt,pointsize=75, rgbcolor='black') \
    +
point(e_gs_pt,pointsize=75, rgbcolor='black') \
    +
point(ef_gs_pt,pointsize=75, rgbcolor='black') \
    +
point(js_pt,pointsize=100,rgbcolor='green')
    S = circle((0,0),1,rgbcolor='yellow')
    S +=
line([e_pt,e_gs_pt], rgbcolor='red', thickness=4)
    S +=
line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3)
    S +=
line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2)
    S +=
point(e_pt,pointsize=50, rgbcolor='red')
    S +=
point(f_pt,pointsize=50, rgbcolor='blue')
    S +=
point(ef_pt,pointsize=50,rgbcolor='purple')
    S +=
point(f_gs_pt,pointsize=75, rgbcolor='black')             S += point(e_gs_pt,pointsize=75, rgbcolor='black')
    S +=
point(ef_gs_pt,pointsize=75, rgbcolor='black')
    S +=
point(js_pt,pointsize=100,rgbcolor='green')
Line 564: Line 559:
        S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)), \         S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)),
Line 583: Line 578:
{{{ {{{#!sagecell
Line 632: Line 627:
    S = circle((0,0),1,rgbcolor='yellow')  \
    +
line([e_pt,e_gs_pt], rgbcolor='red', thickness=4) \
    +
line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3) \
    +
line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2) \
    +
point(e_pt,pointsize=50, rgbcolor='red')  \
    +
point(f_pt,pointsize=50, rgbcolor='blue') \
    +
point(ef_pt,pointsize=50,rgbcolor='purple') \
    +
point(f_gs_pt,pointsize=75, rgbcolor='black') \
    +
point(e_gs_pt,pointsize=75, rgbcolor='black') \
    +
point(ef_gs_pt,pointsize=75, rgbcolor='black') \
    +
point(js_pt,pointsize=100,rgbcolor='green')
    S = circle((0,0),1,rgbcolor='yellow')
    S +=
line([e_pt,e_gs_pt], rgbcolor='red', thickness=4)
    S +=
line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3)
    S +=
line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2)
    S +=
point(e_pt,pointsize=50, rgbcolor='red')
    S +=
point(f_pt,pointsize=50, rgbcolor='blue')
    S +=
point(ef_pt,pointsize=50,rgbcolor='purple')
    S +=
point(f_gs_pt,pointsize=75, rgbcolor='black')
    S +=
point(e_gs_pt,pointsize=75, rgbcolor='black')
    S +=
point(ef_gs_pt,pointsize=75, rgbcolor='black')
    S +=
point(js_pt,pointsize=100,rgbcolor='green')
Line 644: Line 639:
        S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)), \         S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)),
Line 656: Line 651:
        ga[i].save('j%d.PNG'%i,figsize=4,aspect_ratio=1, \         ga[i].save('j%d.png'%i,figsize=4,aspect_ratio=1,
Line 662: Line 657:
    html('<table bgcolor=lightgrey cellpadding=2>')     s='<table bgcolor=lightgrey cellpadding=2>'
Line 664: Line 659:
        html('<tr><td align="center"><img src="cell://j%d.PNG"></td>'%(2*i))
        html('<td align="center"><img src="cell://j%d.PNG"></td></tr>'%(2*i+1))
    html('</table>')
}}}
        s+='<tr><td align="center"><img src="cell://j%d.png"></td>'%(2*i)
        s+='<td align="center"><img src="cell://j%d.png"></td></tr>'%(2*i+1)
    s+='</table>'

    html(s)}}}
Line 673: Line 668:
== Adding points on an elliptic curve == == Adding points on an elliptic curve FIXME ==
Line 675: Line 670:
{{{ {{{#!sagecell
Line 751: Line 746:
{{{ {{{#!sagecell
Line 766: Line 761:
{{{ {{{#!sagecell
Line 780: Line 775:
    print """
<
html>
    html("""
Line 805: Line 799:
</ol></html> </ol>
Line 807: Line 801:
       (g^ b)^a, g^a, b, p, (g^a)^b)        (g^ b)^a, g^a, b, p, (g^a)^b))
Line 815: Line 809:
== Continued Fraction Plotter == == Continued Fraction Plotter FIXME ==
Line 817: Line 811:
{{{ {{{#!sagecell
Line 827: Line 821:
{{{ {{{#!sagecell
Line 848: Line 842:
{{{ {{{#!sagecell
Line 856: Line 850:
def _(gen = selector(['t+1', 't-1', '-1/t'], nrows=1)): def _(gen = selector(['t+1', 't-1', '-1/t'], buttons=True,nrows=1)):

Integer Factorization

Divisibility Poset

by William Stein

divposet.png

Factor Trees

by William Stein

factortree.png

More complicated demonstration using Mathematica: http://demonstrations.wolfram.com/FactorTrees/

Factoring an Integer

by Timothy Clemans

Sage implementation of the Mathematica demonstration of the same name. http://demonstrations.wolfram.com/FactoringAnInteger/

Prime Numbers

Illustrating the prime number theorem

by William Stein

primes.png

Prime Spiral - Square FIXME

by David Runde

SquareSpiral.PNG

Prime Spiral - Polar

by David Runde

PolarSpiral.PNG

Modular Forms

Computing modular forms

by William Stein

modformbasis.png

Computing the cuspidal subgroup

by William Stein

cuspgroup.png

A Charpoly and Hecke Operator Graph FIXME

by William Stein

heckegraph.png

Modular Arithmetic

Quadratic Residue Table FIXME

by Emily Kirkman

quadres.png

quadresbig.png

Cubic Residue Table FIXME

by Emily Kirkman

cubres.png

Cyclotomic Fields

Gauss and Jacobi Sums in Complex Plane

by Emily Kirkman

jacobising.png

Exhaustive Jacobi Plotter

by Emily Kirkman

jacobiexh.png

Elliptic Curves

Adding points on an elliptic curve FIXME

by David Møller Hansen

PointAddEllipticCurve.png

Plotting an elliptic curve over a finite field

ellffplot.png

Cryptography

The Diffie-Hellman Key Exchange Protocol

by Timothy Clemans and William Stein

dh.png

Other

Continued Fraction Plotter FIXME

by William Stein

contfracplot.png

Computing Generalized Bernoulli Numbers

by William Stein (Sage-2.10.3)

bernoulli.png

Fundamental Domains of SL_2(ZZ)

by Robert Miller

fund_domain.png

interact/number_theory (last edited 2020-06-14 09:10:48 by chapoton)