|
Size: 30302
Comment:
|
Size: 30437
Comment: removed j in Computing modular forms (fixed)
|
| Deletions are marked like this. | Additions are marked like this. |
| Line 7: | Line 7: |
| {{{ | {{{#!sagecell |
| Line 18: | Line 18: |
| {{{ | {{{#!sagecell |
| Line 72: | Line 72: |
| {{{ | {{{#!sagecell |
| Line 86: | Line 86: |
| {{{ | {{{#!sagecell |
| Line 94: | Line 94: |
| == Prime Spiral - Square == | == Prime Spiral - Square FIXME == |
| Line 96: | Line 96: |
| {{{ | {{{#!sagecell |
| Line 145: | Line 145: |
| N = M.copy() | N = copy(M) |
| Line 233: | Line 233: |
| {{{ | {{{#!sagecell |
| Line 307: | Line 307: |
| {{{ j = 0 |
{{{#!sagecell |
| Line 313: | Line 312: |
| print j; global j; j += 1 | |
| Line 330: | Line 328: |
| {{{ | {{{#!sagecell |
| Line 340: | Line 338: |
| == A Charpoly and Hecke Operator Graph == | == A Charpoly and Hecke Operator Graph FIXME == |
| Line 343: | Line 341: |
| {{{ | {{{#!sagecell |
| Line 364: | Line 362: |
| == Quadratic Residue Table == | == Quadratic Residue Table FIXME == |
| Line 366: | Line 364: |
| {{{ | {{{#!sagecell |
| Line 417: | Line 415: |
| == Cubic Residue Table == | == Cubic Residue Table FIXME == |
| Line 419: | Line 417: |
| {{{ | {{{#!sagecell |
| Line 437: | Line 435: |
| if Mod(a,3)!=0 and Mod(b,3)==0: return True else: return False |
return Mod(a,3)!=0 and Mod(b,3)==0 |
| Line 503: | Line 498: |
| {{{ | {{{#!sagecell |
| Line 552: | Line 547: |
| S = circle((0,0),1,rgbcolor='yellow') \ + line([e_pt,e_gs_pt], rgbcolor='red', thickness=4) \ + line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3) \ + line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2) \ + point(e_pt,pointsize=50, rgbcolor='red') \ + point(f_pt,pointsize=50, rgbcolor='blue') \ + point(ef_pt,pointsize=50,rgbcolor='purple') \ + point(f_gs_pt,pointsize=75, rgbcolor='black') \ + point(e_gs_pt,pointsize=75, rgbcolor='black') \ + point(ef_gs_pt,pointsize=75, rgbcolor='black') \ + point(js_pt,pointsize=100,rgbcolor='green') |
S = circle((0,0),1,rgbcolor='yellow') S += line([e_pt,e_gs_pt], rgbcolor='red', thickness=4) S += line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3) S += line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2) S += point(e_pt,pointsize=50, rgbcolor='red') S += point(f_pt,pointsize=50, rgbcolor='blue') S += point(ef_pt,pointsize=50,rgbcolor='purple') S += point(f_gs_pt,pointsize=75, rgbcolor='black') S += point(e_gs_pt,pointsize=75, rgbcolor='black') S += point(ef_gs_pt,pointsize=75, rgbcolor='black') S += point(js_pt,pointsize=100,rgbcolor='green') |
| Line 564: | Line 559: |
| S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)), \ | S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)), |
| Line 583: | Line 578: |
| {{{ | {{{#!sagecell |
| Line 632: | Line 627: |
| S = circle((0,0),1,rgbcolor='yellow') \ + line([e_pt,e_gs_pt], rgbcolor='red', thickness=4) \ + line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3) \ + line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2) \ + point(e_pt,pointsize=50, rgbcolor='red') \ + point(f_pt,pointsize=50, rgbcolor='blue') \ + point(ef_pt,pointsize=50,rgbcolor='purple') \ + point(f_gs_pt,pointsize=75, rgbcolor='black') \ + point(e_gs_pt,pointsize=75, rgbcolor='black') \ + point(ef_gs_pt,pointsize=75, rgbcolor='black') \ + point(js_pt,pointsize=100,rgbcolor='green') |
S = circle((0,0),1,rgbcolor='yellow') S += line([e_pt,e_gs_pt], rgbcolor='red', thickness=4) S += line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3) S += line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2) S += point(e_pt,pointsize=50, rgbcolor='red') S += point(f_pt,pointsize=50, rgbcolor='blue') S += point(ef_pt,pointsize=50,rgbcolor='purple') S += point(f_gs_pt,pointsize=75, rgbcolor='black') S += point(e_gs_pt,pointsize=75, rgbcolor='black') S += point(ef_gs_pt,pointsize=75, rgbcolor='black') S += point(js_pt,pointsize=100,rgbcolor='green') |
| Line 644: | Line 639: |
| S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)), \ | S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)), |
| Line 656: | Line 651: |
| ga[i].save('j%d.PNG'%i,figsize=4,aspect_ratio=1, \ | ga[i].save('j%d.png'%i,figsize=4,aspect_ratio=1, |
| Line 662: | Line 657: |
| html('<table bgcolor=lightgrey cellpadding=2>') | s='<table bgcolor=lightgrey cellpadding=2>' |
| Line 664: | Line 659: |
| html('<tr><td align="center"><img src="cell://j%d.PNG"></td>'%(2*i)) html('<td align="center"><img src="cell://j%d.PNG"></td></tr>'%(2*i+1)) html('</table>') }}} |
s+='<tr><td align="center"><img src="cell://j%d.png"></td>'%(2*i) s+='<td align="center"><img src="cell://j%d.png"></td></tr>'%(2*i+1) s+='</table>' html(s)}}} |
| Line 673: | Line 668: |
| == Adding points on an elliptic curve == | == Adding points on an elliptic curve FIXME == |
| Line 675: | Line 670: |
| {{{ | {{{#!sagecell |
| Line 751: | Line 746: |
| {{{ | {{{#!sagecell |
| Line 766: | Line 761: |
| {{{ | {{{#!sagecell |
| Line 780: | Line 775: |
| print """ <html> |
html(""" |
| Line 805: | Line 799: |
| </ol></html> | </ol> |
| Line 807: | Line 801: |
| (g^ b)^a, g^a, b, p, (g^a)^b) | (g^ b)^a, g^a, b, p, (g^a)^b)) |
| Line 815: | Line 809: |
| == Continued Fraction Plotter == | == Continued Fraction Plotter FIXME == |
| Line 817: | Line 811: |
| {{{ | {{{#!sagecell |
| Line 827: | Line 821: |
| {{{ | {{{#!sagecell |
| Line 848: | Line 842: |
| {{{ | {{{#!sagecell |
| Line 856: | Line 850: |
| def _(gen = selector(['t+1', 't-1', '-1/t'], nrows=1)): | def _(gen = selector(['t+1', 't-1', '-1/t'], buttons=True,nrows=1)): |
Contents
Integer Factorization
Divisibility Poset
by William Stein
Factor Trees
by William Stein
More complicated demonstration using Mathematica: http://demonstrations.wolfram.com/FactorTrees/
Factoring an Integer
by Timothy Clemans
Sage implementation of the Mathematica demonstration of the same name. http://demonstrations.wolfram.com/FactoringAnInteger/
Prime Numbers
Illustrating the prime number theorem
by William Stein
Prime Spiral - Square FIXME
by David Runde
Prime Spiral - Polar
by David Runde
Modular Forms
Computing modular forms
by William Stein
Computing the cuspidal subgroup
by William Stein
A Charpoly and Hecke Operator Graph FIXME
by William Stein
Modular Arithmetic
Quadratic Residue Table FIXME
by Emily Kirkman
Cubic Residue Table FIXME
by Emily Kirkman
Cyclotomic Fields
Gauss and Jacobi Sums in Complex Plane
by Emily Kirkman
Exhaustive Jacobi Plotter
by Emily Kirkman
Elliptic Curves
Adding points on an elliptic curve FIXME
by David Møller Hansen
Plotting an elliptic curve over a finite field
Cryptography
The Diffie-Hellman Key Exchange Protocol
by Timothy Clemans and William Stein
Other
Continued Fraction Plotter FIXME
by William Stein
Computing Generalized Bernoulli Numbers
by William Stein (Sage-2.10.3)
Fundamental Domains of SL_2(ZZ)
by Robert Miller
