Differences between revisions 8 and 24 (spanning 16 versions)
Revision 8 as of 2009-02-15 08:38:32
Size: 9364
Revision 24 as of 2020-06-02 15:13:32
Size: 14300
Editor: kcrisman
Deletions are marked like this. Additions are marked like this.
Line 9: Line 9:
{{{ {{{#!sagecell
Line 11: Line 11:
from math import cos,sin
Line 13: Line 12:
    from math import cos, sin
Line 30: Line 30:
def curves_of_pursuit(n = slider([2..20],default = 6, label="# of points"),steps = slider([2^i for i in range(1,10)],default = 10, label="# of steps"), stepsize = slider(srange(.01,1,.01),default = .2, label="stepsize"), colorize = checkbox(default = False)):
    outpaths = pursuit(n,1,0,stepsize, steps = steps)
def curves_of_pursuit(n = slider([2..20],default = 5, label="# of points"),steps = slider([floor(1.4^i) for i in range(2,18)],default = 10, label="# of steps"), stepsize = slider(srange(.01,1,.01),default = .2, label="stepsize"), colorize = selector(['BW','Line color', 'Filled'],default = 'BW')):
    outpaths = pursuit(n,0,1,stepsize, steps = steps)
Line 34: Line 34:
    if colorize:     polys = Graphics()
    if colorize=='Line color':
Line 36: Line 37:
    elif colorize == 'BW':
        colors = [(0,0,0) for j in range(len(outpaths[0]))]
Line 37: Line 40:
        colors = [hue(j/steps,1,1) for j in range(len(outpaths[0]))]
        polys = sum([polygon([outpaths[(i+1)%n][j+1],outpaths[(i+1)%n][j], outpaths[i][j+1]], rgbcolor = colors[j]) for i in range(n) for j in range(len(outpaths[0])-1)])
        #polys = polys[0]
Line 40: Line 46:
    show(sum(lpaths)+nested, axes = False, figsize = [5,5], xmin = -1, xmax = 1, ymin = -1, ymax =1)
    show(sum(lpaths)+nested+polys, axes = False, figsize = [5,5], xmin = -1, xmax = 1, ymin = -1, ymax =1)
Line 45: Line 51:
{{{ {{{#!sagecell
Line 101: Line 107:
        print "Bug selecting plot?"         print("Bug selecting plot?")
Line 105: Line 111:
    html('<h2>%s</h2>'%example)     pretty_print(html('<h2>%s</h2>'%example))
Line 107: Line 113:
        html('<h3><a target="_new" href="%s">%s</a></h3>'%(url,url))
    show(P, viewer='tachyon' if tachyon else 'jmol', frame=frame)
        pretty_print(html('<h3><a target="_new" href="%s">%s</a></h3>'%(url,url)))
    show(P, viewer='tachyon' if tachyon else 'threejs', frame=frame)
Line 115: Line 121:
{{{ {{{#!sagecell
Line 128: Line 134:
{{{ {{{#!sagecell
Line 139: Line 145:
         viewer='tachyon' if tachyon else 'jmol',          viewer='tachyon' if tachyon else 'threejs',
Line 151: Line 157:
{{{ {{{#!sagecell
Line 157: Line 163:
def _(band_number = selector(range(1,5)), current_color = Color('red')):

def _(band_number = selector(range(1,5)), current_color = Color('red'), auto_update=False):
Line 168: Line 175:
def color_experimenter(expression=input_box('', 'Expression', str), color=Color('red')):
def color_experimenter(expression=input_box('x^2', 'Expression', str), color=Color('red')):
Line 175: Line 182:
            print "There's a problem with your expression."             print("There's a problem with your expression.")
        print("Be sure to enter a plottable expression")
Line 179: Line 188:
== Interactive 2d Plotting == == Interactive 2D Plotting ==
Line 181: Line 190:
{{{ {{{#!sagecell
Line 183: Line 192:
    print '<html><p style="font-family:Arial, sans-serif;color:#000"><span style="color:red;font-weight:bold">Error</span>: %s</p></html>' % msg     pretty_print(html('<p style="font-family:Arial, sans-serif;color:#000"><span style="color:red;font-weight:bold">Error</span>: %s</p>' % msg))
Line 191: Line 200:
            print error_msg('This is not an expression.')             print(error_msg('This is not an expression.'))
Line 196: Line 205:
                    print "var('%s')\nplot(%s).show(%s%s%s)" % (expression.variables()[0], repr(expression), 'aspect_ratio=1' if square else '', ', ' if square and not axes else '', 'axes=False' if not axes else '')                     print("var('%s')\nplot(%s).show(%s%s%s)" % (expression.variables()[0], repr(expression), 'aspect_ratio=1' if square else '', ', ' if square and not axes else '', 'axes=False' if not axes else ''))
Line 202: Line 211:
                    print "var('%s')\nplot(%s)" % (expression.variables()[0], repr(expression))                     print("var('%s')\nplot(%s)" % (expression.variables()[0], repr(expression)))
Line 205: Line 214:
            print error_msg('This expression has more than one variable.')             print(error_msg('This expression has more than one variable.'))
Line 208: Line 217:
            print error_msg("This expression contains an unknown function.")             print(error_msg("This expression contains an unknown function."))
Line 212: Line 221:

== Interact with matplotlib ==
# Simple example demonstrating how to interact with matplotlib directly.
# Comment plt.clf() to get the plots overlay in each update.
# Gokhan Sever & Harald Schilly (2010-01-24)

from scipy import stats
import numpy as np
import matplotlib.pyplot as plt

def plot_norm(loc=(0,(0,10)), scale=(1,(1,10))):
    rv = stats.norm(loc, scale)
    x = np.linspace(-10,10,1000)

== Spirograph ==
# Javier Pérez Lázaro #
# Logroño (Spain) #
# [email protected] #


text1='Spirograph is a tool for drawing hypotrochoids and epitrochoids.'
text2='Assume that a A is a point attached to a circle. A can be attached to the boundary of the circle or to any exterior or interior place. If the circle rolls around the outside of a fixed circle, the curve traced by the point A is called an epitrochoid. In case the circle rolls around the inside of a fixed circle, the curve is an hypotrochoid.'
text3='If the quotient between the radii of the circles is a rational number, then the curves are periodic.'

#the code

def fun(
tex1=text_control(text1), tex2=text_control(text2), tex3=text_control(text3),
tex4=text_control('Radius of the circle. Should be a rational number with shape p/q.'),
tex5=text_control("Rate between the distance of the point to the circle's center and the radius."),
u=selector(['Plot the curve. Slider of % below enabled.',
'Build an animation of the plot with the number of frames specified below.'],label='Choose:'),
per=slider(0,100,1,default=100,label='graph %'),
cir_bool=checkbox(True, "Show circles?"),
    if h == 'hypotrochoid' and (b >= 1 or b <= 0):
        print("In a hypotrochoid, radius must be between 0 and 1.")
        draw = False
    if h == 'epitrochoid' and b <= 0:
        print("In a epitrochoid, radius must be positive")
    if draw==True:
        if h=='hypotrochoid': b=-b
        if u=='Plot the curve. Slider of % below enabled.':
            if cir_bool:
        if u=='Build an animation of the plot with the number of frames specified below.':
            for a in srange(step,tMax,step):
                if cir_bool:

Sage Interactions - Graphics

goto interact main page

Curves of Pursuit

by Marshall Hampton.


Catalog of 3D Parametric Plots


Interactive rotatable raytracing with Tachyon3d


Interactive 3d plotting


Somewhat Silly Egg Painter

by Marshall Hampton (refereed by William Stein)


Plot Coloring

by Timothy Clemans


Interactive 2D Plotting

by Timothy Clemans


Interact with matplotlib




interact/graphics (last edited 2020-06-02 15:13:32 by kcrisman)