Processing Math: Done
No jsMath TeX fonts found -- using unicode fonts instead.
This may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 31 and 41 (spanning 10 versions)
Revision 31 as of 2012-05-09 02:24:27
Size: 8300
Editor: jason
Comment:
Revision 41 as of 2019-04-06 16:11:28
Size: 8098
Editor: chapoton
Comment: py3 print
Deletions are marked like this. Additions are marked like this.
Line 9: Line 9:
def muk_plot(m0,k):   def muk_plot(m0,k):
Line 12: Line 12:
    associated to m0, 1-m0, and k.        associated to m0, 1-m0, and k.
Line 32: Line 32:
html("<h1>Mandelbrot's Fractal Binomial Measure</h1>") pretty_print(html("<h1>Mandelbrot's Fractal Binomial Measure</h1>"))
Line 52: Line 52:
def f(A = matrix([[1,1],[-1,1]]), D = '[[0,0],[1,0]]', k=(3..17)):
    print "Det = ", A.det()
def f(A = matrix([[1,1],[-1,1]]), D = '[[0,0],[1,0]]', k=[3..17]):
    print("Det = {}".format(A.det()))
Line 61: Line 61:
    
Line 63: Line 63:
   
    show(G, frame=True, axes=False)    
}}}
{{attachment:1.png}} 

    show(G, frame=True, axes=False)
}}}
{{attachment:1.png}}
Line 75: Line 75:
def f(A = matrix([[1,1],[-1,1]]), D = '[[0,0],[1,0]]', k=(3..17)):
    print "Det = ", A.det()
def f(A = matrix([[1,1],[-1,1]]), D = '[[0,0],[1,0]]', k=[3..17]):
    print("Det = {}".format(A.det()))
Line 84: Line 84:
    
Line 86: Line 86:
   
Line 88: Line 88:
 
Line 93: Line 93:
    
{{{#!sagecell
 

{{{#!sagecell
Line 105: Line 105:
    
@interact
def f(A = matrix([[0,0,2],[1,0,1],[0,1,-1]]), D = '[[0,0,0],[1,0,0]]', k=(3..15), labels=True):
    print "Det = ", A.det()

@interact
def f(A = matrix([[0,0,2],[1,0,1],[0,1,-1]]), D = '[[0,0,0],[1,0,0]]', k=[3..15], labels=False):
    print("Det = {}".format(A.det()))
Line 110: Line 110:
    print "D:"
    print D
    print("D:")
    print(D)
Line 116: Line 116:
    
Line 131: Line 131:
def mandelbrot_cython(float x0,float x1,float y0,float y1,  def mandelbrot_cython(float x0,float x1,float y0,float y1,
Line 148: Line 148:
            while (h<L and              while (h<L and
Line 167: Line 167:
                    N = slider(100, 1000,100, 300),                      N = slider(100, 1000,100, 300),
Line 185: Line 185:
    
    time m=mandelbrot_cython(x0 ,x0 + side ,y0 ,y0 + side , N, L )

    m=mandelbrot_cython(x0 ,x0 + side ,y0 ,y0 + side , N, L )
Line 193: Line 193:
    time pylab.savefig('mandelbrot.png')     pylab.savefig('mandelbrot.png')
Line 200: Line 200:
published notebook: [[http://sagenb.org/pub/1299/]] published notebook: [[https://cloud.sagemath.com/projects/19575ea0-317e-402b-be57-368d04c113db/files/pub/1201-1301/1299-Mandelbrot.sagews]]
Line 215: Line 215:
    
Line 219: Line 219:
    ff = fast_callable(f, vars=[z,c], domain=CDF)    
    
    ff = fast_callable(f, vars=[z,c], domain=CDF)
Line 228: Line 228:
    print 'z <- z^%s + c' % expo
    
    print('z <- z^%s + c' % expo)
Line 234: Line 234:
     func = mandel     
     
     func = mandel
Line 251: Line 251:
    I = CDF.gen()         I = CDF.gen()
Line 254: Line 254:
    
Line 261: Line 261:
    print 'z <- z^%s + (%s+%s*I)' % (expo, c_real, c_imag)
    
    print('z <- z^%s + (%s+%s*I)' % (expo, c_real, c_imag))
Line 275: Line 275:
from numpy import zeros
Line 278: Line 276:
    '''Generates the Sierpiński Triangle fractal to N iterations using the Rule 90 elementary cellular automaton. N is in powers of 2 because these produce "whole" triangles.'''
    M=zeros( (N,2*N+1), dtype=int)
    M[0,N]=1
    rule=[0, 1, 0, 1, 1, 0, 1, 0]
    
    for j in range(1,N):
        for k in range(N-j,N+j+1):
            l = 4*M[j-1,k-1] + 2*M[j-1,k] + M[j-1,k+1]
            M[j,k]=rule[ l ]
    return M
    
@interact
def _(N=slider([2**a for a in range(0, 12)], label='Number of iterations',default=128), size = slider(1, 20, label= 'Size', step_size=1, default=9 )):
    M = sierpinski(N)
    plot_M = matrix_plot(M, cmap='binary')
    plot_M.show( figsize=[size,size])
   '''Generates the Sierpinski triangle by taking the modulo-2 of each element in Pascal's triangle'''
   return [([0] * (N // 2 - a // 2)) + [binomial(a, b) % 2 for b in range(a + 1)] + ([0] * (N // 2 - a // 2)) for a in range(0, N, 2)]

@interact
def _(N=slider([2 ** a for a in range(12)], label='Number of iterations', default=64), size=slider(1, 20, label='Size', step_size=1, default=9)):
    M = sierpinski(2 * N)
    matrix_plot(M, cmap='binary').show(figsize=[size, size])

Sage Interactions - Fractal

goto interact main page

Mandelbrot's Fractal Binomial Distribution

binomial.png

Fractals Generated By Digit Sets and Dilation Matrices

(Sage Days 9 - Avra Laarakker)

Attempt at Generating all integer vectors with Digits D and Matrix A (How about vector([0,-1])?)

1.png

Demonstrating that the Twin Dragon Matrix is likely to yield a Tiling of a Compact Interval of R^2 as k->infinity (It does!)

2.png

Now in 3D

3.png

4.png


CategoryCategory

Exploring Mandelbrot

Pablo Angulo

%cython
import numpy as np
cimport numpy as np

def mandelbrot_cython(float x0,float  x1,float  y0,float  y1,
                   int N=200, int L=50, float R=3):
    '''returns an array NxN to be plotted with matrix_plot
    '''
    cdef double complex c, z, I
    cdef float deltax, deltay, R2 = R*R
    cdef int h, j, k
    cdef np.ndarray[np.uint16_t, ndim=2] m
    m = np.zeros((N,N), dtype=np.uint16)
    I = complex(0,1)
    deltax = (x1-x0)/N
    deltay = (y1-y0)/N
    for j in range(N):
        for k in range(N):
            c = (x0+j*deltax)+ I*(y0+k*deltay)
            z=0
            h=0
            while (h<L and
                   z.real**2 + z.imag**2 < R2):
                z=z*z+c
                h+=1
            m[j,k]=h
    return m

import pylab
x0_default = -2
y0_default = -1.5
side_default = 3.0
side = side_default
x0 = x0_default
y0 = y0_default
options = ['Reset','Upper Left', 'Upper Right', 'Stay', 'Lower Left', 'Lower Right']

@interact
def show_mandelbrot(option = selector(options, nrows = 2, width=8),
                    N = slider(100, 1000,100, 300),
                    L = slider(20, 300, 20, 60),
                    plot_size = slider(2,10,1,6),
                    auto_update = False):
    global x0, y0, side
    if option == 'Lower Right':
        x0 += side/2
        y0 += side/2
    elif option == 'Upper Right':
        y0 += side/2
    elif option == 'Lower Left':
        x0 += side/2
    if option=='Reset':
        side = side_default
        x0 = x0_default
        y0 = y0_default
    elif option != 'Stay':
        side = side/2

    m=mandelbrot_cython(x0 ,x0 + side ,y0 ,y0 + side , N, L )
#    p = (matrix_plot(m) +
#             line2d([(N/2,0),(N/2,N)], color='red', zorder=2) +
#             line2d([(0,N/2),(N,N/2)], color='red', zorder=2))
#    time show(p, figsize = (plot_size, plot_size))
    pylab.clf()
    pylab.imshow(m, cmap = pylab.cm.gray)
    pylab.savefig('mandelbrot.png')

mandelbrot_cython.png

Mandelbrot & Julia Interact with variable exponent

published notebook: https://cloud.sagemath.com/projects/19575ea0-317e-402b-be57-368d04c113db/files/pub/1201-1301/1299-Mandelbrot.sagews

Mandelbrot

by Harald Schilly

mandel-interact-02.png

Julia

by Harald Schilly

julia-interact-01.png

julia_plot(-7,30,0.5,0.5,(-1.5,1.5), (-1.5,1.5))

julia-fractal-exponent--7.png

Sierpiński Triangle

by Eviatar Bach

sierpinski.png

interact/fractal (last edited 2019-04-06 16:11:28 by chapoton)