Processing Math: Done
No jsMath TeX fonts found -- using unicode fonts instead.
This may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 29 and 30
Revision 29 as of 2012-05-09 02:16:36
Size: 8308
Editor: jason
Comment:
Revision 30 as of 2012-05-09 02:21:41
Size: 8311
Editor: jason
Comment:
Deletions are marked like this. Additions are marked like this.
Line 42: Line 42:
== Fractals Generated By Digit Sets and Dilation Matrices (Sage Days 9 - Avra Laarakker) ==

== Attempt at Generating all integer vectors with Digits D and Matrix A (How about vector([0,-1])?) ==
== Fractals Generated By Digit Sets and Dilation Matrices ==
(Sage Days 9 - Avra Laarakker)

Attempt at Generating all integer vectors with Digits D and Matrix A (How about vector([0,-1])?)
Line 60: Line 62:
    G = points([v.list() for v in Dn(k)])     G = points([v.list() for v in Dn(k)],size=50)
Line 62: Line 64:
    show(G, frame=True, axes=False)
    show(G, frame=True, axes=False)

Sage Interactions - Fractal

goto interact main page

Mandelbrot's Fractal Binomial Distribution

binomial.png

Fractals Generated By Digit Sets and Dilation Matrices

(Sage Days 9 - Avra Laarakker)

Attempt at Generating all integer vectors with Digits D and Matrix A (How about vector([0,-1])?)

1.png

Demonstrating that the Twin Dragon Matrix is likely to yield a Tiling of a Compact Interval of R^2 as k->infinity (It does!)

2.png

Now in 3D

3.png

4.png


CategoryCategory

Exploring Mandelbrot

Pablo Angulo

%cython
import numpy as np
cimport numpy as np

def mandelbrot_cython(float x0,float  x1,float  y0,float  y1, 
                   int N=200, int L=50, float R=3):
    '''returns an array NxN to be plotted with matrix_plot
    '''
    cdef double complex c, z, I
    cdef float deltax, deltay, R2 = R*R
    cdef int h, j, k
    cdef np.ndarray[np.uint16_t, ndim=2] m
    m = np.zeros((N,N), dtype=np.uint16)
    I = complex(0,1)
    deltax = (x1-x0)/N
    deltay = (y1-y0)/N
    for j in range(N):
        for k in range(N):
            c = (x0+j*deltax)+ I*(y0+k*deltay)
            z=0
            h=0
            while (h<L and 
                   z.real**2 + z.imag**2 < R2):
                z=z*z+c
                h+=1
            m[j,k]=h
    return m

import pylab
x0_default = -2
y0_default = -1.5
side_default = 3.0
side = side_default
x0 = x0_default
y0 = y0_default
options = ['Reset','Upper Left', 'Upper Right', 'Stay', 'Lower Left', 'Lower Right']

@interact
def show_mandelbrot(option = selector(options, nrows = 2, width=8),
                    N = slider(100, 1000,100, 300), 
                    L = slider(20, 300, 20, 60),
                    plot_size = slider(2,10,1,6),
                    auto_update = False):
    global x0, y0, side
    if option == 'Lower Right':
        x0 += side/2
        y0 += side/2
    elif option == 'Upper Right':
        y0 += side/2
    elif option == 'Lower Left':
        x0 += side/2
    if option=='Reset':
        side = side_default
        x0 = x0_default
        y0 = y0_default
    elif option != 'Stay':
        side = side/2
    
    time m=mandelbrot_cython(x0 ,x0 + side ,y0 ,y0 + side , N, L )
#    p = (matrix_plot(m) +
#             line2d([(N/2,0),(N/2,N)], color='red', zorder=2) +
#             line2d([(0,N/2),(N,N/2)], color='red', zorder=2))
#    time show(p, figsize = (plot_size, plot_size))
    pylab.clf()
    pylab.imshow(m, cmap = pylab.cm.gray)
    time pylab.savefig('mandelbrot.png')

mandelbrot_cython.png

Mandelbrot & Julia Interact with variable exponent

published notebook: http://sagenb.org/pub/1299/

Mandelbrot

by Harald Schilly

mandel-interact-02.png

Julia

by Harald Schilly

julia-interact-01.png

julia_plot(-7,30,0.5,0.5,(-1.5,1.5), (-1.5,1.5))

julia-fractal-exponent--7.png

Sierpiński Triangle

by Eviatar Bach

sierpinski.png

interact/fractal (last edited 2019-04-06 16:11:28 by chapoton)