Processing Math: Done
No jsMath TeX fonts found -- using unicode fonts instead.
This may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 20 and 21
Revision 20 as of 2010-10-29 20:12:31
Size: 7363
Editor: pang
Comment: minor
Revision 21 as of 2010-11-02 21:19:51
Size: 7377
Editor: pang
Comment: modified "exploring mandelbrot": code would not work on some machines
Deletions are marked like this. Additions are marked like this.
Line 137: Line 137:
    cdef np.ndarray[int, ndim=2] m
    m = np.zeros((N,N), dtype=int)
    cdef np.ndarray[np.uint16_t, ndim=2] m
    m = np.zeros((N,N), dtype=np.uint16)

Sage Interactions - Fractal

goto interact main page

Mandelbrot's Fractal Binomial Distribution

def muk_plot(m0,k):  
    """
    Return a plot of the binomial fractal measure mu_k
    associated to m0, 1-m0, and k.   
    """
    k = int(k)
    m0 = float(m0)
    m1 = float(1 - m0)
    assert m0 > 0 and m1 > 0, "both must be positive"
    v = [(0,0)]
    t = 0
    two = int(2)
    delta = float(1/2^k)
    multiplier = float(2^k)
    for i in [0..2^k-1]:
        t = i * delta
        phi1 = i.str(two).count("1")
        phi0 = k - phi1
        y = m0^(phi0)*m1^(phi1)*multiplier
        v.append((t,y))
        v.append((t+delta,y))
    return v

html("<h1>Mandelbrot's Fractal Binomial Measure</h1>")

@interact
def _(mu0=(0.3,(0.0001,0.999)), k=(3,(1..14)), thickness=(1.0,(0.1,0.2,..,1.0))):
    v = muk_plot(mu0,k)
    line(v,thickness=thickness).show(xmin=0.5, xmax=0.5, ymin=0, figsize=[8,3])

binomial.png

Fractals Generated By Digit Sets and Dilation Matrices (Sage Days 9 - Avra Laarakker)

Attempt at Generating all integer vectors with Digits D and Matrix A (How about vector([0,-1])?)

A = matrix([[1,1],[-1,1]])
D = [vector([0,0]), vector([1,0])]

@interact
def f(A = matrix([[1,1],[-1,1]]), D = '[[0,0],[1,0]]', k=(3..17)):
    print "Det = ", A.det()
    D = matrix(eval(D)).rows()
    def Dn(k):
        ans = []
        for d in Tuples(D, k):
            s = sum(A^n*d[n] for n in range(k))
            ans.append(s)
        return ans
    
    G = points([v.list() for v in Dn(k)])
   
    show(G, frame=True, axes=False)

1.png

Demonstrating that the Twin Dragon Matrix is likely to yield a Tiling of a Compact Interval of R^2 as k->infinity (It does!)

A = matrix([[1,1],[-1,1]])
D = [vector([0,0]), vector([1,0])]

@interact
def f(A = matrix([[1,1],[-1,1]]), D = '[[0,0],[1,0]]', k=(3..17)):
    print "Det = ", A.det()
    D = matrix(eval(D)).rows()
    def Dn(k):
        ans = []
        for d in Tuples(D, k):
            s = sum(A^(-n)*d[n] for n in range(k))
            ans.append(s)
        return ans
    
    G = points([v.list() for v in Dn(k)])
   
    show(G, frame=True, axes=False)

2.png

Now in 3d

A = matrix([[0,0,2],[1,0,1],[0,1,-1]])
D = '[[0,0,0],[1,0,0]]'

def Dn(D,A,k):
    ans = []
    for d in Tuples(D, k):
        s = sum(A^n*d[n] for n in range(k))
        ans.append(s)
    return ans
    
@interact
def f(A = matrix([[0,0,2],[1,0,1],[0,1,-1]]), D = '[[0,0,0],[1,0,0]]', k=(3..15), labels=True):
    print "Det = ", A.det()
    D = matrix(eval(D)).rows()
    print "D:"
    print D
    G = point3d([v.list() for v in Dn(D,A,k)], size=8)#, opacity=.85)
    if labels:
        G += sum([text3d(str(v),v) for v in Dn(D,A,k)])
    show(G, axes=False, frame=False)

3.png

4.png


CategoryCategory

Exploring Mandelbrot

Pablo Angulo

%cython
import numpy as np
cimport numpy as np

def mandelbrot_cython(float x0,float  x1,float  y0,float  y1, 
                   int N=200, int L=50, float R=3):
    '''returns an array NxN to be plotted with matrix_plot
    '''
    cdef double complex c, z, I
    cdef float deltax, deltay, R2 = R*R
    cdef int h, j, k
    cdef np.ndarray[np.uint16_t, ndim=2] m
    m = np.zeros((N,N), dtype=np.uint16)
    I = complex(0,1)
    deltax = (x1-x0)/N
    deltay = (y1-y0)/N
    for j in range(N):
        for k in range(N):
            c = (x0+j*deltax)+ I*(y0+k*deltay)
            z=0
            h=0
            while (h<L and 
                   z.real**2 + z.imag**2 < R2):
                z=z*z+c
                h+=1
            m[j,k]=h
    return m

import pylab
x0_default = -2
y0_default = -1.5
side_default = 3.0
side = side_default
x0 = x0_default
y0 = y0_default
options = ['Reset','Upper Left', 'Upper Right', 'Stay', 'Lower Left', 'Lower Right']

@interact
def show_mandelbrot(option = selector(options, nrows = 2, width=8),
                    N = slider(100, 1000,100, 300), 
                    L = slider(20, 300, 20, 60),
                    plot_size = slider(2,10,1,6),
                    auto_update = False):
    global x0, y0, side
    if option == 'Lower Right':
        x0 += side/2
        y0 += side/2
    elif option == 'Upper Right':
        y0 += side/2
    elif option == 'Lower Left':
        x0 += side/2
    if option=='Reset':
        side = side_default
        x0 = x0_default
        y0 = y0_default
    elif option == 'Stay':
        pass
    else:
        side = side/2
    
    time m=mandelbrot_cython(x0 ,x0 + side ,y0 ,y0 + side , N, L )
#    p = (matrix_plot(m) +
#             line2d([(N/2,0),(N/2,N)], color='red', zorder=2) +
#             line2d([(0,N/2),(N,N/2)], color='red', zorder=2))
#    time show(p, figsize = (plot_size, plot_size))
    pylab.clf()
    pylab.imshow(m, cmap = pylab.cm.gray)
    time pylab.savefig('mandelbrot.png')

mandelbrot_cython.png

Mandelbrot & Julia Interact with variable exponent

published notebook: http://sagenb.org/pub/1299/

Mandelbrot

by Harald Schilly

@interact
def mandel_plot(expo = slider(-10,10,0.1,2), \
      formula = list(['mandel','ff']),\
      iterations=slider(1,100,1,30), \
      zoom_x = range_slider(-2,2,0.01,(-2,1)), \
      zoom_y = range_slider(-2,2,0.01,(-1.5,1.5))):
    var('z c')
    f(z,c) = z^expo + c
    ff_m = fast_callable(f, vars=[z,c], domain=CDF)
    
    # messing around with fast_callable
    for i in range(int(iterations)/3):
        f(z,c) = f(z,c)^expo+c
    ff = fast_callable(f, vars=[z,c], domain=CDF)    
    
    def mandel(z):
      c = z
      for i in range(iterations):
         z = ff_m(z,c)
         if abs(z) > 2:
            return z
      return z
    print 'z <- z^%s + c' % expo
    
    # calling ff three times, otherwise it fast_callable exceeds a recursion limit
    if formula is 'ff':
     func = lambda z: ff(ff(ff(z,z),z),z)
    elif formula is 'mandel':
     func = mandel     
     
    complex_plot(func, zoom_x,zoom_y, plot_points=200, dpi=150).show(frame=True, aspect_ratio=1)

mandel-interact-02.png

Julia

by Harald Schilly

@interact
def julia_plot(expo = slider(-10,10,0.1,2), \
      iterations=slider(1,100,1,30), \
      c_real = slider(-2,2,0.01,0.5), \
      c_imag = slider(-2,2,0.01,0.5), \
      zoom_x = range_slider(-2,2,0.01,(-1.5,1.5)), \
      zoom_y = range_slider(-2,2,0.01,(-1.5,1.5))):
    var('z')
    I = CDF.gen()    
    f(z) = z^expo + c_real + c_imag*I
    ff_j = fast_callable(f, vars=[z], domain=CDF)
    
    def julia(z):
      for i in range(iterations):
         z = ff_j(z)
         if abs(z) > 2:
            return z
      return z
    print 'z <- z^%s + (%s+%s*I)' % (expo, c_real, c_imag)
    
    complex_plot(julia, zoom_x,zoom_y, plot_points=200, dpi=150).show(frame=True, aspect_ratio=1)

julia-interact-01.png

julia_plot(-7,30,0.5,0.5,(-1.5,1.5), (-1.5,1.5))

julia-fractal-exponent--7.png

interact/fractal (last edited 2019-04-06 16:11:28 by chapoton)