2916
Comment:
|
5951
|
Deletions are marked like this. | Additions are marked like this. |
Line 2: | Line 2: |
goto [:interact:interact main page] [[TableOfContents]] |
goto [[interact|interact main page]] <<TableOfContents>> |
Line 40: | Line 40: |
attachment:binomial.png == Fractals Generated By Digit Sets and Dilation Matrices == ==Attempt at Generating all integer vectors with Digits D and Matrix A (How about vector([0,-1])?)== |
{{attachment:binomial.png}} == Fractals Generated By Digit Sets and Dilation Matrices (Sage Days 9 - Avra Laarakker) == == Attempt at Generating all integer vectors with Digits D and Matrix A (How about vector([0,-1])?) == |
Line 65: | Line 65: |
== Demonstrating that the Twin Dragon Matrix is likely to yield a Tiling of a Compact Interval of R^2 as k->infinity (It does!)== |
{{attachment:1.png}} == Demonstrating that the Twin Dragon Matrix is likely to yield a Tiling of a Compact Interval of R^2 as k->infinity (It does!) == |
Line 88: | Line 89: |
==Now in 3d== |
{{attachment:2.png}} == Now in 3d == |
Line 111: | Line 113: |
G += sum([text(str(v),v) for v in Dn(D,A,k)]) | G += sum([text3d(str(v),v) for v in Dn(D,A,k)]) |
Line 115: | Line 117: |
{{attachment:3.png}} {{attachment:4.png}} ---- CategoryCategory == Exploring Mandelbrot == Pablo Angulo {{{ %cython import numpy as np def mandelbrot_cython(float x0,float x1,float y0,float y1,int N=200, int L=50, float R=3): '''returns an array NxN to be plotted with matrix_plot ''' cdef int h, i, k m= np.zeros([N,N], dtype=np.int) for i in range(N): for k in range(N): c=complex(x0+i*(x1-x0)/N, y0+k*(y1-y0)/N) z=complex(0,0) h=0 while (h<L) and (abs(z)<R): z=z*z+c h+=1 m[i,k]=h return m }}} {{{ @interact def showme_mandelbrot(x0=-2, y0=-1.5, side=3.0,N=(100*i for i in range(1,11)), L=(20*i for i in range(1,11)) ): time m=mandelbrot_cython(x0 ,x0 + side ,y0 ,y0 + side , N, L ) time show(matrix_plot(m)) }}} {{attachment:mandelbrot_cython.png}} == Mandelbrot & Julia Interact with variable exponent == published notebook: [[http://sagenb.org/pub/1299/]] === Mandelbrot === by Harald Schilly {{{ @interact def mandel_plot(expo = slider(-10,10,0.1,2), \ formula = list(['mandel','ff']),\ iterations=slider(1,100,1,30), \ zoom_x = range_slider(-2,2,0.01,(-2,1)), \ zoom_y = range_slider(-2,2,0.01,(-1.5,1.5))): var('z c') f(z,c) = z^expo + c ff_m = fast_callable(f, vars=[z,c], domain=CDF) # messing around with fast_callable for i in range(int(iterations)/3): f(z,c) = f(z,c)^expo+c ff = fast_callable(f, vars=[z,c], domain=CDF) def mandel(z): c = z for i in range(iterations): z = ff_m(z,c) if abs(z) > 2: return z return z print 'z <- z^%s + c' % expo # calling ff three times, otherwise it fast_callable exceeds a recursion limit if formula is 'ff': func = lambda z: ff(ff(ff(z,z),z),z) elif formula is 'mandel': func = mandel complex_plot(func, zoom_x,zoom_y, plot_points=200, dpi=150).show(frame=True, aspect_ratio=1) }}} === Julia === by Harald Schilly {{{ @interact def julia_plot(expo = slider(-10,10,0.1,2), \ iterations=slider(1,100,1,30), \ c_real = slider(-2,2,0.01,0.5), \ c_imag = slider(-2,2,0.01,0.5), \ zoom_x = range_slider(-2,2,0.01,(-1.5,1.5)), \ zoom_y = range_slider(-2,2,0.01,(-1.5,1.5))): var('z') I = CDF.gen() f(z) = z^expo + c_real + c_imag*I ff_j = fast_callable(f, vars=[z], domain=CDF) def julia(z): for i in range(iterations): z = ff_j(z) if abs(z) > 2: return z return z print 'z <- z^%s + (%s+%s*I)' % (expo, c_real, c_imag) complex_plot(julia, zoom_x,zoom_y, plot_points=200, dpi=150).show(frame=True, aspect_ratio=1) }}} {{{ julia_plot(-7,30,0.5,0.5,(-1.5,1.5), (-1.5,1.5)) }}} |
Sage Interactions - Fractal
goto interact main page
Contents
-
Sage Interactions - Fractal
- Mandelbrot's Fractal Binomial Distribution
- Fractals Generated By Digit Sets and Dilation Matrices (Sage Days 9 - Avra Laarakker)
- Attempt at Generating all integer vectors with Digits D and Matrix A (How about vector([0,-1])?)
- Demonstrating that the Twin Dragon Matrix is likely to yield a Tiling of a Compact Interval of R^2 as k->infinity (It does!)
- Now in 3d
- Exploring Mandelbrot
- Mandelbrot & Julia Interact with variable exponent
Mandelbrot's Fractal Binomial Distribution
def muk_plot(m0,k): """ Return a plot of the binomial fractal measure mu_k associated to m0, 1-m0, and k. """ k = int(k) m0 = float(m0) m1 = float(1 - m0) assert m0 > 0 and m1 > 0, "both must be positive" v = [(0,0)] t = 0 two = int(2) delta = float(1/2^k) multiplier = float(2^k) for i in [0..2^k-1]: t = i * delta phi1 = i.str(two).count("1") phi0 = k - phi1 y = m0^(phi0)*m1^(phi1)*multiplier v.append((t,y)) v.append((t+delta,y)) return v html("<h1>Mandelbrot's Fractal Binomial Measure</h1>") @interact def _(mu0=(0.3,(0.0001,0.999)), k=(3,(1..14)), thickness=(1.0,(0.1,0.2,..,1.0))): v = muk_plot(mu0,k) line(v,thickness=thickness).show(xmin=0.5, xmax=0.5, ymin=0, figsize=[8,3])
Fractals Generated By Digit Sets and Dilation Matrices (Sage Days 9 - Avra Laarakker)
Attempt at Generating all integer vectors with Digits D and Matrix A (How about vector([0,-1])?)
A = matrix([[1,1],[-1,1]]) D = [vector([0,0]), vector([1,0])] @interact def f(A = matrix([[1,1],[-1,1]]), D = '[[0,0],[1,0]]', k=(3..17)): print "Det = ", A.det() D = matrix(eval(D)).rows() def Dn(k): ans = [] for d in Tuples(D, k): s = sum(A^n*d[n] for n in range(k)) ans.append(s) return ans G = points([v.list() for v in Dn(k)]) show(G, frame=True, axes=False)
Demonstrating that the Twin Dragon Matrix is likely to yield a Tiling of a Compact Interval of R^2 as k->infinity (It does!)
A = matrix([[1,1],[-1,1]]) D = [vector([0,0]), vector([1,0])] @interact def f(A = matrix([[1,1],[-1,1]]), D = '[[0,0],[1,0]]', k=(3..17)): print "Det = ", A.det() D = matrix(eval(D)).rows() def Dn(k): ans = [] for d in Tuples(D, k): s = sum(A^(-n)*d[n] for n in range(k)) ans.append(s) return ans G = points([v.list() for v in Dn(k)]) show(G, frame=True, axes=False)
Now in 3d
A = matrix([[0,0,2],[1,0,1],[0,1,-1]]) D = '[[0,0,0],[1,0,0]]' def Dn(D,A,k): ans = [] for d in Tuples(D, k): s = sum(A^n*d[n] for n in range(k)) ans.append(s) return ans @interact def f(A = matrix([[0,0,2],[1,0,1],[0,1,-1]]), D = '[[0,0,0],[1,0,0]]', k=(3..15), labels=True): print "Det = ", A.det() D = matrix(eval(D)).rows() print "D:" print D G = point3d([v.list() for v in Dn(D,A,k)], size=8)#, opacity=.85) if labels: G += sum([text3d(str(v),v) for v in Dn(D,A,k)]) show(G, axes=False, frame=False)
Exploring Mandelbrot
Pablo Angulo
%cython import numpy as np def mandelbrot_cython(float x0,float x1,float y0,float y1,int N=200, int L=50, float R=3): '''returns an array NxN to be plotted with matrix_plot ''' cdef int h, i, k m= np.zeros([N,N], dtype=np.int) for i in range(N): for k in range(N): c=complex(x0+i*(x1-x0)/N, y0+k*(y1-y0)/N) z=complex(0,0) h=0 while (h<L) and (abs(z)<R): z=z*z+c h+=1 m[i,k]=h return m
@interact def showme_mandelbrot(x0=-2, y0=-1.5, side=3.0,N=(100*i for i in range(1,11)), L=(20*i for i in range(1,11)) ): time m=mandelbrot_cython(x0 ,x0 + side ,y0 ,y0 + side , N, L ) time show(matrix_plot(m))
Mandelbrot & Julia Interact with variable exponent
published notebook: http://sagenb.org/pub/1299/
Mandelbrot
by Harald Schilly
@interact def mandel_plot(expo = slider(-10,10,0.1,2), \ formula = list(['mandel','ff']),\ iterations=slider(1,100,1,30), \ zoom_x = range_slider(-2,2,0.01,(-2,1)), \ zoom_y = range_slider(-2,2,0.01,(-1.5,1.5))): var('z c') f(z,c) = z^expo + c ff_m = fast_callable(f, vars=[z,c], domain=CDF) # messing around with fast_callable for i in range(int(iterations)/3): f(z,c) = f(z,c)^expo+c ff = fast_callable(f, vars=[z,c], domain=CDF) def mandel(z): c = z for i in range(iterations): z = ff_m(z,c) if abs(z) > 2: return z return z print 'z <- z^%s + c' % expo # calling ff three times, otherwise it fast_callable exceeds a recursion limit if formula is 'ff': func = lambda z: ff(ff(ff(z,z),z),z) elif formula is 'mandel': func = mandel complex_plot(func, zoom_x,zoom_y, plot_points=200, dpi=150).show(frame=True, aspect_ratio=1)
Julia
by Harald Schilly
@interact def julia_plot(expo = slider(-10,10,0.1,2), \ iterations=slider(1,100,1,30), \ c_real = slider(-2,2,0.01,0.5), \ c_imag = slider(-2,2,0.01,0.5), \ zoom_x = range_slider(-2,2,0.01,(-1.5,1.5)), \ zoom_y = range_slider(-2,2,0.01,(-1.5,1.5))): var('z') I = CDF.gen() f(z) = z^expo + c_real + c_imag*I ff_j = fast_callable(f, vars=[z], domain=CDF) def julia(z): for i in range(iterations): z = ff_j(z) if abs(z) > 2: return z return z print 'z <- z^%s + (%s+%s*I)' % (expo, c_real, c_imag) complex_plot(julia, zoom_x,zoom_y, plot_points=200, dpi=150).show(frame=True, aspect_ratio=1)
julia_plot(-7,30,0.5,0.5,(-1.5,1.5), (-1.5,1.5))