Processing Math: Done
No jsMath TeX fonts found -- using unicode fonts instead.
This may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 11 and 41 (spanning 30 versions)
Revision 11 as of 2009-03-18 16:03:33
Size: 3900
Editor: pang
Comment: added "Exploring Mandelbrot"
Revision 41 as of 2019-04-06 16:11:28
Size: 8098
Editor: chapoton
Comment: py3 print
Deletions are marked like this. Additions are marked like this.
Line 8: Line 8:
{{{
def muk_plot(m0,k):  
{{{#!sagecell
def muk_plot(m0,k):
Line 12: Line 12:
    associated to m0, 1-m0, and k.        associated to m0, 1-m0, and k.
Line 32: Line 32:
html("<h1>Mandelbrot's Fractal Binomial Measure</h1>")

@interact
def _(mu0=(0.3,(0.0001,0.999)), k=(3,(1..14)), thickness=(1.0,(0.1,0.2,..,1.0))):
pretty_print(html("<h1>Mandelbrot's Fractal Binomial Measure</h1>"))

@interact
def _(mu0=slider(0.0001,0.999,default=0.3), k=slider([1..14],default=3), thickness=slider([0.1,0.2,..,1.0],default=1.0)):
Line 37: Line 37:
    line(v,thickness=thickness).show(xmin=0.5, xmax=0.5, ymin=0, figsize=[8,3])     line(v,thickness=thickness).show(xmin=0, xmax=1, ymin=0, figsize=[8,3])
Line 42: Line 42:
== Fractals Generated By Digit Sets and Dilation Matrices (Sage Days 9 - Avra Laarakker) ==

==
Attempt at Generating all integer vectors with Digits D and Matrix A (How about vector([0,-1])?) ==
{{{
== Fractals Generated By Digit Sets and Dilation Matrices ==
(Sage Days 9 - Avra Laarakker)

Attempt at Generating all integer vectors with Digits D and Matrix A (How about vector([0,-1])?)

{{{#!sagecell
Line 50: Line 52:
def f(A = matrix([[1,1],[-1,1]]), D = '[[0,0],[1,0]]', k=(3..17)):
    print "Det = ", A.det()
def f(A = matrix([[1,1],[-1,1]]), D = '[[0,0],[1,0]]', k=[3..17]):
    print("Det = {}".format(A.det()))
Line 59: Line 61:
    
    G = points([v.list() for v in Dn(k)])
   

    G = points([v.list() for v in Dn(k)],size=50)
Line 63: Line 65:
     }}}
{{attachment:1.png}} 
}}}
{{attachment:1.png}}
Line 69: Line 70:
{{{ {{{#!sagecell
Line 74: Line 75:
def f(A = matrix([[1,1],[-1,1]]), D = '[[0,0],[1,0]]', k=(3..17)):
    print "Det = ", A.det()
def f(A = matrix([[1,1],[-1,1]]), D = '[[0,0],[1,0]]', k=[3..17]):
    print("Det = {}".format(A.det()))
Line 83: Line 84:
    
Line 85: Line 86:
   
Line 87: Line 88:
 
Line 91: Line 92:
== Now in 3d ==
    
{{{
 
== Now in 3D ==

{{{#!sagecell
Line 104: Line 105:
    
@interact
def f(A = matrix([[0,0,2],[1,0,1],[0,1,-1]]), D = '[[0,0,0],[1,0,0]]', k=(3..15), labels=True):
    print "Det = ", A.det()

@interact
def f(A = matrix([[0,0,2],[1,0,1],[0,1,-1]]), D = '[[0,0,0],[1,0,0]]', k=[3..15], labels=False):
    print("Det = {}".format(A.det()))
Line 109: Line 110:
    print "D:"
    print D
    print("D:")
    print(D)
Line 115: Line 116:
    
Line 128: Line 129:
def mandelbrot_cython(float x0,float x1,float y0,float y1,int N=200, int L=50, float R=3): cimport numpy as np

def mandelbrot_cython(float x0,float x1,float y0,float y1,
                   
int N=200, int L=50, float R=3):
Line 131: Line 135:
    m= np.zeros([N,N], dtype=np.int)
    for i in range(N):
    cdef double complex c, z, I
    cdef float deltax, deltay, R2 = R*R
    cdef int h, j, k
    cdef np.ndarray[np.uint16_t, ndim=2] m
    m = np.zeros((N,N), dtype=np.uint16)
    I = complex(0,1)
    deltax = (x1-x0)/N
    deltay = (y1-y0)/N
    for j in range(N):
Line 134: Line 145:
            c=complex(x0+i*(x1-x0)/N, y0+k*(y1-y0)/N)
            z=complex(0,0)
            c = (x0+j*deltax)+ I*(y0+k*deltay)
            z=0
Line 137: Line 148:
            while (h<L) and (abs(z)<R):             while (h<L and
                  z.real**2 + z.imag**2 < R2):
Line 140: Line 152:
            m[i,k]=h             m[j,k]=h
Line 144: Line 156:
@interact
def showme_mandelbrot(x0=-2, y0=-1.5, side=3.0,N=(100*i for i in range(1,11)), L=(20*i for i in range(1,11)) ):
    time m=mandelbrot_cython(x0 ,x0 + side ,y0 ,y0 + side , N, L )
    time show(matrix_plot(m))
import pylab
x0_default = -2
y0_default = -1.5
side_default = 3.0
side = side_default
x0 = x0_default
y0 = y0_default
options = ['Reset','Upper Left', 'Upper Right', 'Stay', 'Lower Left', 'Lower Right']

@interact
def show_mandelbrot(option = selector(options, nrows = 2, width=8),
                    N = slider(100, 1000,100, 300),
                    L = slider(20, 300, 20, 60),
                    plot_size = slider(2,10,1,6),
                    auto_update = False):
    global x0, y0, side
    if option == 'Lower Right':
        x0 += side/2
        y0 += side/2
    elif option == 'Upper Right':
        y0 += side/2
    elif option == 'Lower Left':
        x0 += side/2
    if option=='Reset':
        side = side_default
        x0 = x0_default
        y0 = y0_default
    elif option != 'Stay':
        side = side/2

    m=mandelbrot_cython(x0 ,x0 + side ,y0 ,y0 + side , N, L )
# p = (matrix_plot(m) +
# line2d([(N/2,0),(N/2,N)], color='red', zorder=2) +
# line2d([(0,N/2),(N,N/2)], color='red', zorder=2))
# time show(p, figsize = (plot_size, plot_size))
    pylab.clf()
    pylab.imshow(m, cmap = pylab.cm.gray)
    pylab.savefig('mandelbrot.png')
Line 150: Line 196:


== Mandelbrot & Julia Interact with variable exponent ==

published notebook: [[https://cloud.sagemath.com/projects/19575ea0-317e-402b-be57-368d04c113db/files/pub/1201-1301/1299-Mandelbrot.sagews]]

=== Mandelbrot ===
by Harald Schilly

{{{#!sagecell
@interact
def mandel_plot(expo = slider(-10,10,0.1,2), \
      formula = ['mandel','ff'],\
      iterations=slider(1,100,1,30), \
      zoom_x = range_slider(-2,2,0.01,(-2,1)), \
      zoom_y = range_slider(-2,2,0.01,(-1.5,1.5))):
    var('z c')
    f(z,c) = z^expo + c
    ff_m = fast_callable(f, vars=[z,c], domain=CDF)

    # messing around with fast_callable
    for i in range(int(iterations)/3):
        f(z,c) = f(z,c)^expo+c
    ff = fast_callable(f, vars=[z,c], domain=CDF)

    def mandel(z):
      c = z
      for i in range(iterations):
         z = ff_m(z,c)
         if abs(z) > 2:
            return z
      return z
    print('z <- z^%s + c' % expo)

    # calling ff three times, otherwise it fast_callable exceeds a recursion limit
    if formula is 'ff':
     func = lambda z: ff(ff(ff(z,z),z),z)
    elif formula is 'mandel':
     func = mandel

    complex_plot(func, zoom_x,zoom_y, plot_points=200, dpi=150).show(frame=True, aspect_ratio=1)
}}}
{{attachment:mandel-interact-02.png}}
=== Julia ===
by Harald Schilly

{{{#!sagecell
@interact
def julia_plot(expo = slider(-10,10,0.1,2), \
      iterations=slider(1,100,1,30), \
      c_real = slider(-2,2,0.01,0.5), \
      c_imag = slider(-2,2,0.01,0.5), \
      zoom_x = range_slider(-2,2,0.01,(-1.5,1.5)), \
      zoom_y = range_slider(-2,2,0.01,(-1.5,1.5))):
    var('z')
    I = CDF.gen()
    f(z) = z^expo + c_real + c_imag*I
    ff_j = fast_callable(f, vars=[z], domain=CDF)

    def julia(z):
      for i in range(iterations):
         z = ff_j(z)
         if abs(z) > 2:
            return z
      return z
    print('z <- z^%s + (%s+%s*I)' % (expo, c_real, c_imag))

    complex_plot(julia, zoom_x,zoom_y, plot_points=200, dpi=150).show(frame=True, aspect_ratio=1)
}}}
{{attachment:julia-interact-01.png}}
{{{
julia_plot(-7,30,0.5,0.5,(-1.5,1.5), (-1.5,1.5))
}}}
{{attachment:julia-fractal-exponent--7.png}}

== Sierpiński Triangle ==
by Eviatar Bach

{{{#!sagecell
def sierpinski(N):
   '''Generates the Sierpinski triangle by taking the modulo-2 of each element in Pascal's triangle'''
   return [([0] * (N // 2 - a // 2)) + [binomial(a, b) % 2 for b in range(a + 1)] + ([0] * (N // 2 - a // 2)) for a in range(0, N, 2)]

@interact
def _(N=slider([2 ** a for a in range(12)], label='Number of iterations', default=64), size=slider(1, 20, label='Size', step_size=1, default=9)):
    M = sierpinski(2 * N)
    matrix_plot(M, cmap='binary').show(figsize=[size, size])
}}}
{{attachment:sierpinski.png}}

Sage Interactions - Fractal

goto interact main page

Mandelbrot's Fractal Binomial Distribution

binomial.png

Fractals Generated By Digit Sets and Dilation Matrices

(Sage Days 9 - Avra Laarakker)

Attempt at Generating all integer vectors with Digits D and Matrix A (How about vector([0,-1])?)

1.png

Demonstrating that the Twin Dragon Matrix is likely to yield a Tiling of a Compact Interval of R^2 as k->infinity (It does!)

2.png

Now in 3D

3.png

4.png


CategoryCategory

Exploring Mandelbrot

Pablo Angulo

%cython
import numpy as np
cimport numpy as np

def mandelbrot_cython(float x0,float  x1,float  y0,float  y1,
                   int N=200, int L=50, float R=3):
    '''returns an array NxN to be plotted with matrix_plot
    '''
    cdef double complex c, z, I
    cdef float deltax, deltay, R2 = R*R
    cdef int h, j, k
    cdef np.ndarray[np.uint16_t, ndim=2] m
    m = np.zeros((N,N), dtype=np.uint16)
    I = complex(0,1)
    deltax = (x1-x0)/N
    deltay = (y1-y0)/N
    for j in range(N):
        for k in range(N):
            c = (x0+j*deltax)+ I*(y0+k*deltay)
            z=0
            h=0
            while (h<L and
                   z.real**2 + z.imag**2 < R2):
                z=z*z+c
                h+=1
            m[j,k]=h
    return m

import pylab
x0_default = -2
y0_default = -1.5
side_default = 3.0
side = side_default
x0 = x0_default
y0 = y0_default
options = ['Reset','Upper Left', 'Upper Right', 'Stay', 'Lower Left', 'Lower Right']

@interact
def show_mandelbrot(option = selector(options, nrows = 2, width=8),
                    N = slider(100, 1000,100, 300),
                    L = slider(20, 300, 20, 60),
                    plot_size = slider(2,10,1,6),
                    auto_update = False):
    global x0, y0, side
    if option == 'Lower Right':
        x0 += side/2
        y0 += side/2
    elif option == 'Upper Right':
        y0 += side/2
    elif option == 'Lower Left':
        x0 += side/2
    if option=='Reset':
        side = side_default
        x0 = x0_default
        y0 = y0_default
    elif option != 'Stay':
        side = side/2

    m=mandelbrot_cython(x0 ,x0 + side ,y0 ,y0 + side , N, L )
#    p = (matrix_plot(m) +
#             line2d([(N/2,0),(N/2,N)], color='red', zorder=2) +
#             line2d([(0,N/2),(N,N/2)], color='red', zorder=2))
#    time show(p, figsize = (plot_size, plot_size))
    pylab.clf()
    pylab.imshow(m, cmap = pylab.cm.gray)
    pylab.savefig('mandelbrot.png')

mandelbrot_cython.png

Mandelbrot & Julia Interact with variable exponent

published notebook: https://cloud.sagemath.com/projects/19575ea0-317e-402b-be57-368d04c113db/files/pub/1201-1301/1299-Mandelbrot.sagews

Mandelbrot

by Harald Schilly

mandel-interact-02.png

Julia

by Harald Schilly

julia-interact-01.png

julia_plot(-7,30,0.5,0.5,(-1.5,1.5), (-1.5,1.5))

julia-fractal-exponent--7.png

Sierpiński Triangle

by Eviatar Bach

sierpinski.png

interact/fractal (last edited 2019-04-06 16:11:28 by chapoton)