Processing Math: Done
No jsMath TeX fonts found -- using unicode fonts instead.
This may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 11 and 12
Revision 11 as of 2009-03-18 16:03:33
Size: 3900
Editor: pang
Comment: added "Exploring Mandelbrot"
Revision 12 as of 2009-03-18 16:54:00
Size: 3944
Editor: pang
Comment: added cdef for speed
Deletions are marked like this. Additions are marked like this.
Line 131: Line 131:
    cdef complex c,z
    cdef int h, i, k

Sage Interactions - Fractal

goto interact main page

Mandelbrot's Fractal Binomial Distribution

def muk_plot(m0,k):  
    """
    Return a plot of the binomial fractal measure mu_k
    associated to m0, 1-m0, and k.   
    """
    k = int(k)
    m0 = float(m0)
    m1 = float(1 - m0)
    assert m0 > 0 and m1 > 0, "both must be positive"
    v = [(0,0)]
    t = 0
    two = int(2)
    delta = float(1/2^k)
    multiplier = float(2^k)
    for i in [0..2^k-1]:
        t = i * delta
        phi1 = i.str(two).count("1")
        phi0 = k - phi1
        y = m0^(phi0)*m1^(phi1)*multiplier
        v.append((t,y))
        v.append((t+delta,y))
    return v

html("<h1>Mandelbrot's Fractal Binomial Measure</h1>")

@interact
def _(mu0=(0.3,(0.0001,0.999)), k=(3,(1..14)), thickness=(1.0,(0.1,0.2,..,1.0))):
    v = muk_plot(mu0,k)
    line(v,thickness=thickness).show(xmin=0.5, xmax=0.5, ymin=0, figsize=[8,3])

binomial.png

Fractals Generated By Digit Sets and Dilation Matrices (Sage Days 9 - Avra Laarakker)

Attempt at Generating all integer vectors with Digits D and Matrix A (How about vector([0,-1])?)

A = matrix([[1,1],[-1,1]])
D = [vector([0,0]), vector([1,0])]

@interact
def f(A = matrix([[1,1],[-1,1]]), D = '[[0,0],[1,0]]', k=(3..17)):
    print "Det = ", A.det()
    D = matrix(eval(D)).rows()
    def Dn(k):
        ans = []
        for d in Tuples(D, k):
            s = sum(A^n*d[n] for n in range(k))
            ans.append(s)
        return ans
    
    G = points([v.list() for v in Dn(k)])
   
    show(G, frame=True, axes=False)

1.png

Demonstrating that the Twin Dragon Matrix is likely to yield a Tiling of a Compact Interval of R^2 as k->infinity (It does!)

A = matrix([[1,1],[-1,1]])
D = [vector([0,0]), vector([1,0])]

@interact
def f(A = matrix([[1,1],[-1,1]]), D = '[[0,0],[1,0]]', k=(3..17)):
    print "Det = ", A.det()
    D = matrix(eval(D)).rows()
    def Dn(k):
        ans = []
        for d in Tuples(D, k):
            s = sum(A^(-n)*d[n] for n in range(k))
            ans.append(s)
        return ans
    
    G = points([v.list() for v in Dn(k)])
   
    show(G, frame=True, axes=False)

2.png

Now in 3d

A = matrix([[0,0,2],[1,0,1],[0,1,-1]])
D = '[[0,0,0],[1,0,0]]'

def Dn(D,A,k):
    ans = []
    for d in Tuples(D, k):
        s = sum(A^n*d[n] for n in range(k))
        ans.append(s)
    return ans
    
@interact
def f(A = matrix([[0,0,2],[1,0,1],[0,1,-1]]), D = '[[0,0,0],[1,0,0]]', k=(3..15), labels=True):
    print "Det = ", A.det()
    D = matrix(eval(D)).rows()
    print "D:"
    print D
    G = point3d([v.list() for v in Dn(D,A,k)], size=8)#, opacity=.85)
    if labels:
        G += sum([text3d(str(v),v) for v in Dn(D,A,k)])
    show(G, axes=False, frame=False)

3.png

4.png


CategoryCategory

Exploring Mandelbrot

Pablo Angulo

%cython
import numpy as np
def mandelbrot_cython(float x0,float  x1,float  y0,float  y1,int N=200, int L=50, float R=3):
    '''returns an array NxN to be plotted with matrix_plot
    '''
    cdef complex c,z
    cdef int h, i, k
    m= np.zeros([N,N], dtype=np.int)
    for i in range(N):
        for k in range(N):
            c=complex(x0+i*(x1-x0)/N, y0+k*(y1-y0)/N)
            z=complex(0,0)
            h=0
            while (h<L) and (abs(z)<R):
                z=z*z+c
                h+=1
            m[i,k]=h
    return m

@interact
def showme_mandelbrot(x0=-2, y0=-1.5, side=3.0,N=(100*i for i in range(1,11)), L=(20*i for i in range(1,11)) ):
    time m=mandelbrot_cython(x0 ,x0 + side ,y0 ,y0 + side , N, L )
    time show(matrix_plot(m))

mandelbrot_cython.png

interact/fractal (last edited 2019-04-06 16:11:28 by chapoton)