Differences between revisions 3 and 73 (spanning 70 versions)
Revision 3 as of 2019-08-07 18:25:56
Size: 1019
Editor: amy
Comment:
Revision 73 as of 2019-08-09 18:47:05
Size: 31690
Editor: amy
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
= Under Construction =

This page will be created/preened at a Sage Days that will take place August 7th - 10th.

If you have cryptography related interactions that you are interested in adding to this page, please do. You can also contact Amy Feaver at [email protected] (insert my name in 'firstname' and 'lastname') if you have interactions that you are interested in having us add to the page during Sage Days. We will consider them and add them in if we can!


Line 10: Line 2:



This page was first created at Sage Days 103, 7-9 August 2019 by Sarah Arpin, Catalina Camacho-Navarro, Holly Paige Chaos, Amy Feaver, Eva Goedhart, Rebecca Lauren Miller, Alexis Newton, and Nandita Sahajpal. Text edited by Holly Paige Chaos, Amy Feaver, Eva Goedhart, and Alexis Newton. This project was led by Amy Feaver.

We acknowledge Katherine Stange, who allowed us to use code from her cryptography course as a starting point for many of these interacts. Dr. Stange's original code and course page can be found at http://crypto.katestange.net/

If you have cryptography-related interactions that you are interested in adding to this page, please do so. You can also contact Amy Feaver at [email protected]
Line 14: Line 15:

Line 15: Line 18:

The shift cipher is a classical cryptosystem that takes plaintext and shifts it through the alphabet by a given number of letters. For example, a shift of 2 would replace all A's with C's, all B's with D's, etc. When the end of the alphabet is reached, the letters are shifted cyclically back to the beginning. Thus, a shift of 2 would replace Y's with A's and Z's with B's.

=== Shift Cipher Encryption ===
Line 17: Line 24:
{{{#!sagecell
print "Put your message in quotes, and your desired shift: "
@interact
def shift_cipher(message = input_box(default="'secrets hi'", width = 50), shift=slider(0,25,1,3)):
    
You can use this interact to encrypt a message with a shift cipher.

{{{#!sagecell
#Last edited 8/7/19 2:45pm
pretty_print(html("<h1>Shift Cipher Encryptor</h1>"))
print "Put your message inside the provided quotes (with no additional quotes or apostrophes!), and select your desired shift: "
@interact
def shift_cipher(message = input_box(default='"secrets"', width = 50), shift=slider(0,25,1,3)):
Line 26: Line 36:
    print "This is your encrypted text shifted by ",shift,":"
    print C
}}}


=== Shift Cipher Decryption ===
by Sarah Arpin, Alexis Newton

If you know that your message was encrypted using a shift cipher, you can use the known shift value to decrypt. If this is not known, brute force can be used to get 26 possible decrypted messages. The chi-squared function ranks the brute force results by likelihood according to letter frequency.

{{{#!sagecell
#Last edited 8/7/19 2:56pm

pretty_print(html("<h1>Shift Cipher Decryptor</h1>"))
print "Enter the encrypted text in quotes, and enter a guess for the shift amount:"
@interact
def shift_decrypt(text = input_box('"KL"'), shift_by = input_box(0)):
    S = ShiftCryptosystem(AlphabeticStrings())
    ciphertext = S.encoding(text)
    decrypt = S.deciphering(shift_by%26,ciphertext)
    print "If the shift was by", shift_by,", then the original message was:"
    print decrypt
    decrypt = S.brute_force(ciphertext)
    print "These are the possibilities for the plaintext:"
    print decrypt
    decrypt = S.brute_force(ciphertext,ranking = "chisquare")
    print "These are the possibilities ranked by likelihood with the chi-squared function:"
    print decrypt
}}}

== Affine Cipher ==


An affine cipher combines the idea of a shift cipher with a multiplicative cipher. In this particular example, we map consecutive letters of the alphabet to consecutive numbers, starting with A=0 (you can also do this cipher differently, and starting with A=1). The user selects two values, a and b. The value a is the multiplier and must be relatively prime to 26 in order to guarantee that each letter is encoded uniquely. The value b is the addend. Each letter's value is multiplied by a, and the product is added to b. This is then replaced with a new letter, corresponding to the result modulo 26.

=== Affine Cipher Encryption ===
by Sarah Arpin, Alexis Newton

You can use this interact to encrypt a message with the affine cipher. Notice that the only choices for a can be numbers that are relatively prime to 26. This cipher will encipher a letter m of your message as a*m + b.

{{{#!sagecell
# Last edited 8/7/2019 2:01pm

pretty_print(html("<h1>Affine Cipher Encryptor</h1>"))
print "Put your message in between the provided quotes (with no additional quotes or apostrophes!), and select your desired a and b: "
@interact
def affine_cipher(message = input_box(default='"secrets"', width = 50), a=[1,3,5,7,9,11,15,17,19,21,23], b =[0..25]):
    A = AlphabeticStrings()
    S = AffineCryptosystem(A)
    message = S.encoding(message)
    C = S.enciphering(a,b, message)
    print "This is your encrypted text:"
    print C
}}}


=== Affine Cipher Decryption ===
by Sarah Arpin, Alexis Newton

If you know that your message was encrypted using an affine cipher, you can use the known a and b values to decrypt. If these are not known, brute force can be used to get a list of possible decrypted messages. The chi-squared function ranks these results by likelihood according to letter frequency.

{{{#!sagecell
#Last edited 8/7/2019 3:01pm
pretty_print(html("<h1>Affine Cipher Decryptor</h1>"))
print "Enter the encrypted text in quotes, and enter a guess for the a and b:"
@interact
def shift_decrypt(text = input_box('"XNSILPCVA"'), a=[1,3,5,7,9,11,15,17,19,21,23,25], b =[0..25]):
    S = AffineCryptosystem(AlphabeticStrings())
    ciphertext = S.encoding(text)
    decrypt = S.deciphering(a,b,ciphertext)
    print "If the a =", a, "and the b =",b, ", then the original message was:"
    print decrypt
    decrypt = S.brute_force(ciphertext,ranking="none")
    print "\nThese are the possibilities for the plaintext:"
    print decrypt
    decrypt = S.brute_force(ciphertext,ranking = "chisquare")[:10]
    print "\nThese are the top 10 possibilities ranked by likelihood with the chi-squared function:"
    print decrypt
}}}


== Substitution Cipher ==
by Catalina Camacho-Navarro

A substitution cipher encrypts messages by assigning each letter of the alphabet to another letter. For instance, if A is assigned to F, then all A's in the original message will be substituted with F's in the encrypted message. Brute force or frequency analysis can be used to decrypt a message encrypted with a substitution cipher.

{{{#!sagecell


}}}

== Playfair Cipher ==
by Catalina Camacho-Navarro

Based on code from Alasdair McAndrew at trac.sagemath.org/ticket/8559.

A playfair cipher is a special type of substitution cipher in which the plaintext is broken up into two-letter digraphs with some restrictions. Those digraphs are encrypted using a Polybius square, (i.e. a 5x5 grid in which each letter of the alphabet is its own entry with the exception of ij which are placed together). The positions of the letters in the digraph determine how the digraph is encrypted.

{{{#!sagecell
##PLAYFAIR CIPHER

def change_to_plain_text(pl):
    plaintext=''
    for ch in pl:
        if ch.isalpha():
            plaintext+=ch.upper()
    return plaintext

def makePF(word1): #creates 5 x 5 Playfair array beginning with "word"
    word=change_to_plain_text(word1)
    alph='ABCDEFGHIKLMNOPQRSTUVWXYZ'
    pf=''
    for ch in word:
        if (ch<>"J") & (pf.find(ch)==-1): # ensures no letter is repeated
            pf+=ch
    for ch in alph:
        if pf.find(ch)==-1: #only uses unused letters from alph
            pf+=ch
    PF=[[pf[5*i+j] for j in range(5)] for i in range(5)]
    return PF

def pf_encrypt(di,PF): # encrypts a digraph di with a Playfair array PF
    for i in range(5):
        for j in range(5):
            if PF[i][j]==di[0]:
                i0=i
                j0=j
            if PF[i][j]==di[1]:
                i1=i
                j1=j
    if (i0<>i1) & (j0<>j1):
        return PF[i0][j1]+PF[i1][j0]
    if (i0==i1) & (j0<>j1):
        return PF[i0][(j0+1)%5]+PF[i1][(j1+1)%5]
    if (i0<>i1) & (j0==j1):
        return PF[(i0+1)%5][j0]+PF[(i1+1)%5][j1]

def insert(ch,str,j): # a helper function: inserts a character "ch" into
    tmp='' # a string "str" at position j
    for i in range(j):
        tmp+=str[i]
    tmp+=ch
    for i in range(len(str)-j):
        tmp+=str[i+j]
    return tmp


def playfair(pl1,word): # encrypts a plaintext "pl" with a Playfair cipher
    pl=change_to_plain_text(pl1)
    PF=makePF(word) # using a keyword "word"
    pl2=makeDG(pl)
    tmp=''
    for i in range(len(pl2)//2):
        tmp+=pf_encrypt(pl2[2*i]+pl2[2*i+1],PF)
    return tmp

def makeDG(str): # creates digraphs with different values from a string "str"
    tmp=str.replace('J','I') # replace all 'J's with 'I's
    c=len(tmp)
    i=0
    while (c>0) & (2*i+1<len(tmp)):
        if tmp[2*i]==tmp[2*i+1]:
            tmp=insert("X",tmp,2*i+1)
            c-=1
            i+=1
        else:
            c-=2
            i+=1
    if len(tmp)%2==1:
        tmp+='X'
    return tmp

pretty_print(html("<h1>Playfair Cipher Encryptor</h1>"))
print('Enter your message and the key to construct you polybius square. Warning: both the message and the key must be in quotes.')
@interact
def _(Message=input_box(default="'message'"),Key=input_box(default="'key'"),showmatrix=checkbox(True, label='Show polybius square')):
    
    if showmatrix:
        poly=makePF(Key)
        for i in range(5):
            print(poly[i])
    
    print '\nCiphertext:',playfair(Message,Key)
}}}

== Frequency Analysis Tools ==

Frequency analysis is a technique for breaking a substitution cipher that utilizes the frequencies of letters appearing in the English language. For example, E is the most common letter in the English language, so if a piece of encrypted text had many instances of the letter Q, you would guess that Q had been substituted in for E. The next two interacts create a couple of basic tools that could be useful in cracking a substitution cipher.


=== Letter Frequency Counter ===
by Rebecca Lauren Miller, Katherine Stange

This tool looks at the percentage of appearances of each letter in the input text and plots these percentages. The encrypted input text is a bit strange, but was constructed by Amy Feaver to give a short block of text that matched the frequencies of letters in the English language relatively well, to make this message easier to decrypt.

{{{#!sagecell
#Last Edited 8/8/19 at 2:36pm

pretty_print(html("<h1>Letter Frequency Counter</h1>"))
print "This interact prints a bar graph showing the distribution of letters in the input text. Warning: the smaller the input text the less accurate the distribution will be. Letters that do not occur will not appear in the graph."
# Initial text is "Greetiiiings my name is Weeegbert Deuce the True Eater of the Toupee. Hear ye, hear ye! Dee dee dee. A head of these liger cubs carrying the trippy tomahawks are coming fo' thee. Take shelters in the tombs. Tammy ran to the other townspeople and aardvarks. What is her ETA? Her ETA please! Toil, bring your food cups and oil and be swift. The women and the child Occotion CIII should pick bamboo at Atitisoting. See? Nanna Wu Shacah's inner noodle cups: not nuutty sesame notions."

@interact
def frequencyAnalysis(text = input_box('"Nyllappppunz tf uhtl pz Dlllnilya Klbjl aol Aybl Lhaly vm aol Avbwll. Olhy fl, olhy fl! Kll kll kll. H olhk vm aolzl spnly jbiz jhyyfpun aol aypwwf avthohdrz hyl jvtpun mv aoll. Ahrl zolsalyz pu aol avtiz. Ahttf yhu av aol vaoly avduzwlvwsl huk hhykchyrz. Doha pz oly LAH? Oly LAH wslhzl! Avps, iypun fvby mvvk jbwz huk vps huk il zdpma. Aol dvtlu huk aol jopsk Vjjvapvu JPPP zovbsk wpjr ihtivv ha Hapapzvapun. Zll.Uhuuh Db Zohjho z puuly uvvksl jbwz: uva ubbaaf zlzhtl uvapvuz."', width = 150)):
    alphabet = AlphabeticStrings()
    englishText = alphabet.encoding(text)
    distribution = englishText.frequency_distribution()
    L1 = englishText.frequency_distribution().function()
    L1=[x for x in L1.items()]
    L1.sort(key=lambda x:x[0])
    labels, ys = zip(*L1)
    import numpy as np
    import math
    from matplotlib import pyplot as plt
    xs = np.arange(len(labels))
    plt.bar(xs, ys, align='center')
    plt.xticks(xs, labels) #Replace default x-ticks with xs, then replace xs with labels
    plt.ylim(0,.2)
    plt.yticks(ys)
    plt.xlabel('Letters (Some may be missing)')
    plt.ylabel('Frequency')
    plt.show()

}}}


=== Frequency Analysis Decryption Guesser ===
by Rebecca Lauren Miller, Katherine Stange

This interact prints a suggested translation of the input text by matching frequencies of letters in the input to frequencies of letters in the English language. With the output you will see that some letters were substituted in correctly, and others were not. Usually frequency analysis requires additional work and some trial and error to discover the original message, especially if the input text is not long enough.

{{{#!sagecell
#Last edited 8/8/19 at 2:54pm

pretty_print(html("<h1>Frequency Analysis Decryption Guesser</h1>"))
print "Warning: the shorter the input text is, the less accurate the distribution will be."
@interact
# Initial text is "Greetiiiings my name is Weeegbert Deuce the True Eater of the Toupee. Hear ye, hear ye! Dee dee dee. A head of these liger cubs carrying the trippy tomahawks are coming fo' thee. Take shelters in the tombs. Tammy ran to the other townspeople and aardvarks. What is her ETA? Her ETA please! Toil, bring your food cups and oil and be swift. The women and the child Occotion CIII should pick bamboo at Atitisoting. See? Nanna Wu Shacah's inner noodle cups: not nuutty sesame notions."
def frequencyAnalysis(text = input_box('"Nyllappppunz tf uhtl pz Dlllnilya Klbjl aol Aybl Lhaly vm aol Avbwll. Olhy fl, olhy fl! Kll kll kll. H olhk vm aolzl spnly jbiz jhyyfpun aol aypwwf avthohdrz hyl jvtpun mv aoll. Ahrl zolsalyz pu aol avtiz. Ahttf yhu av aol vaoly avduzwlvwsl huk hhykchyrz. Doha pz oly LAH? Oly LAH wslhzl! Avps, iypun fvby mvvk jbwz huk vps huk il zdpma. Aol dvtlu huk aol jopsk Vjjvapvu JPPP zovbsk wpjr ihtivv ha Hapapzvapun. Zll.Uhuuh Db Zohjho z puuly uvvksl jbwz: uva ubbaaf zlzhtl uvapvuz."', width = 150)):
    alphabet= AlphabeticStrings()
    englishText =alphabet.encoding(text)
    L1 = englishText.frequency_distribution().function()
    L1=[x for x in L1.items()]
    L1.sort(key=lambda x:x[1],reverse=True)
    alphafreq = ['E','T','A','O','I','N','S','H','R','D','L','U','C','M','F','W','Y','P','V','B','G','K','J','Q','X','Z']
    translator={}
    for i in range(0, len(L1)):
        translator.update({str(L1[i][0]):alphafreq[i]})
        answer=""
    print "\nThe suggested substitutions, based on letter frequency are:"
    print translator
    for char in englishText:
        answer+= translator[str(char)]
    print "\nThe suggested translation is:\n", answer
}}}

== Vigenère Cipher ==

A Vigenère cipher is an example of a polyalphabetic cipher. Using a secret codeword as the key, the Vigenère encrypts each letter of a message by shifting it according to the corresponding letter in the key. For example, we will use the key "CAT" to encrypt our default text "secrets hi". To do this the message is first broken up into three-letter chunks, because the key is three letters long, to be "SEC RET SHI". Next each letter of the chunk is shifted by the value of the corresponding letter in the key. The standard shifts are A=0, B=1, C=2, etc. So in our example, S shifts by C=2 letters to U, E shifts by A=0 letters and remains at E, and C shifts by T=19 letters to V. Thus "SECRETSHI" becomes UEVTEMUHB when encrypted. To decrypt the message, simply use the keyword to undo the encryption process. Cryptography by Simon Rubinstein-Salzedo was used as reference for this interact.

=== Vigenère Cipher Encryption ===
by Holly Paige Chaos, Rebecca Lauren Miller, Katherine Stange

{{{#!sagecell
#This encrypts your message: Final 8/7/19. Written by Rebecca Lauren Miller, Holly Paige Chaos, Katherine Stange.

Use this interact to encrypt a message using the Vigenère Cipher.

pretty_print(html("<h1>Vigenère Cipher Encryptor</h1>"))
print "Put your message and codeword inside the quotes: "
@interact
def vigenere_cipher(message = input_box(default ="'secrets hi'", width = 50), code_word = input_box(default="'cat'", width = 50)):
    A = AlphabeticStrings()
    message2 = A.encoding(message)
    code_word2 = A.encoding(code_word)
    system = VigenereCryptosystem(A,len(code_word2))
    ciphertext = system.enciphering(code_word2,message2)
Line 27: Line 314:
    print C
}}}
    print ciphertext
}}}

=== Vigenère Cipher Decryption ===
by Holly Paige Chaos, Rebecca Lauren Miller, Katherine Stange

If you used the Vigenère Cipher to encrypt a message, you can use this interact to decrypt by inputting your key and encrypted text.

{{{#!sagecell
#Last edited 8/7/19 at 12:00pm

pretty_print(html("<h1>Vigenère Cipher Decryptor</h1>"))
print "Put your encrypted message and codeword inside the quotes: "
@interact
def vigenere_cipher(message = input_box(default ="'UEVTEMUHB'", width = 50), code_word = input_box(default="'cat'", width = 50)):
    A = AlphabeticStrings()
    message2 = A.encoding(message)
    code_word2 = A.encoding(code_word)
    system = VigenereCryptosystem(A,len(code_word2))
    ciphertext = system.deciphering(code_word2,message2)
    print "Deciphered message:"
    print ciphertext
}}}


== One-Time Pad ==

by Sarah Arpin, Alexis Newton

One-time pad is an encryption method that cannot be cracked, but requires a single-use shared key (known as a one-time pad) the length of the message or longer. In this method, every letter in the message is converted to numbers using the standard A=0, B=1, etc., and

{{{#!sagecell
#Last edited 8/7/2019 5:12pm
from random import randrange
dictt = {'a':0,'b':1,'c':2,'d':3,'e':4,'f':5,'g':6,'h':7,
    'i':8,'j':9,'k':10,'l':11,'m':12,'n':13,'o':14,'p':15,'q':16,
    'r':17,'s':18,'t':19,'u':20,'v':21,'w':22,'x':23,'y':24,'z':25
    }
pretty_print(html("<h1>One-Time Pad Encryptor</h1>"))
print "Enter your message to be encrypted via one-time pad in the Plain Text box below:"
@interact
def one_time_pad(plain_text = input_box("'message'",label="Plain Text:")):
    #This code takes in a plain text, converts all of the letters to numbers, and then creates a one-time pad for encryption
    message = []
    for char in plain_text:
        if char.isalpha():
            message.append(char.lower())
    size = len(message)
    one_time_pad = []
    for i in range(size):
        one_time_pad.append(randrange(26))
    cipher_text = []
    for i in range(size):
        cipher_text.append((dictt[message[i]] + one_time_pad[i]).mod(26))
    letter_cipher_text=""
    for i in cipher_text:
        letter_cipher_text += (chr(i+97))
    print "Your one-time pad is:"
    print one_time_pad
    print ""
    print "Your encrypted message is:"
    print letter_cipher_text
}}}

== Hill Cipher ==


=== Hill Cipher Encryption ===
by Holly Paige Chaos, Alexis Newton

{{{#!sagecell
#Last edited 8/8/19 at 1:47pm
print "Please input the size of your key:"
@interact
def hill_cipher(Size=['2','3','4']):
    if Size=='2':
        print "Please input your message (in quotes) and numbers for your key:"
        @interact
        def two_matrix(message=input_box(default='"Alexis smells"'), a=input_box(default=1), b=input_box(default=3), c=input_box(default=3), d=input_box(default=4)):
            S = AlphabeticStrings()
            E = HillCryptosystem(S,Size)
            R = IntegerModRing(26)
            M = MatrixSpace(R,Size,Size)
            A = M([[a,b],[c,d]])
            print "This is your key:"
            print A
            invertible = A.is_invertible()
            if invertible==false:
                print "WARNING! You will not be able to decrypt this message because your matrix is not invertible."
            e = E(A)
            message=E.encoding(message)
            print "This is your encrypted message:"
            print e(S(message))
    if Size=='3':
        print "Please input your message (in quotes) and the numbers in your square matrix key:"
        @interact
        def three_matrix(message=input_box(default='"Alexis smells"'), a=input_box(default=1), b=input_box(default=2), c=input_box(default=3), d=input_box(default=5), e=input_box(default=2), f=input_box(default=6), g=input_box(default=7), h=input_box(default=9), i=input_box(default=9)):
            S = AlphabeticStrings()
            E = HillCryptosystem(S,3)
            R = IntegerModRing(26)
            M = MatrixSpace(R,3,3)
            A = M([[a,b,c],[d,e,f],[g,h,i]])
            print "This is your key:"
            print A
            invertible = A.is_invertible()
            if invertible==false:
                print "WARNING! You will not be able to decrypt this message because your matrix is not invertible."
            e = E(A)
            message=E.encoding(message)
            print "This is your encrypted message:"
            print e(S(message))
    if Size=='4':
        print "Please input your message (in quotes) and the numbers in your square matrix key:"
        @interact
        def four_matrix(message=input_box(default='"Alexis smells"'), a=input_box(default=17), b=input_box(default=8), c=input_box(default=7), d=input_box(default=10), e=input_box(default=0), f=input_box(default=17), g=input_box(default=5), h=input_box(default=8), i=input_box(default=18), j=input_box(default=12), k=input_box(default=6), l=input_box(default=17), m=input_box(default=0), n=input_box(default=15), o=input_box(default=0), p=input_box(default=17)):
            S = AlphabeticStrings()
            E = HillCryptosystem(S,4)
            R = IntegerModRing(26)
            M = MatrixSpace(R,4,4)
            A = M([[a,b,c,d],[e,f,g,h],[i,j,k,l],[m,n,o,p]])
            print "This is your key:"
            print A
            invertible = A.is_invertible()
            if invertible==false:
                print "WARNING! You will not be able to decrypt this message because your matrix is not invertible."
            e = E(A)
            message=E.encoding(message)
            print "This is your encrypted message:"
            print e(S(message))
}}}


=== Hill Cipher Decryption ===
by Holly Paige Chaos, Alexis Newton

{{{#!sagecell
#Last edited 8/8/19 at 1:47pm
dictt = {'a':1,'b':2,'c':3,'d':4,'e':5,'f':6,'g':7,'h':8,
    'i':9,'j':10,'k':11,'l':12,'m':13,'n':14,'o':15,'p':16,'q':17,
    'r':18,'s':19,'t':20,'u':21,'v':22,'w':23,'x':24,'y':25,'z':26
    }
print "Please select the size of your key:"
@interact
def decrypt_hill(size=['2','3','4']):
    if size=='2':
        print "Please input your encrypted message and your key:"
        @interact
        def two_decrypt(coded_text=input_box(default='"HSVAKSCYLENB"'), a=input_box(default=1), b=input_box(default=3), c=input_box(default=3), d=input_box(default=4)):
            R = IntegerModRing(26)
            M = MatrixSpace(R,2,2)
            a = M([[a,b],[c,d]])
            print "The key:"
            print a
            message = []
            for char in coded_text:
                if char.isalpha():
                    message.append(char.lower())
            cipher_text = []
            for i in range(len(message)):
                cipher_text.append(dictt[message[i]]-1)
            new_text = []
            for i in range(len(cipher_text)-1):
                b = matrix(Integers(26),1,2,[cipher_text[i],cipher_text[i+1]])
                if i%2 ==0:
                    x = b*a.inverse()
                    x.column(0)
                    for i in x[:][0]:
                        new_text.append(i)
            final_text = ""
            for i in range(len(new_text)):
                new_text[i]=Integer(new_text[i])
                final_text += chr(97+new_text[i])
            print "The decrypted text:"
            print final_text
    if size=='3':
        print "Please input your encrypted message and your key:"
        @interact
        def three_decrypt(coded_text=input_box(default='"FGYHQTCSGKYB"'), a=input_box(default=1), b=input_box(default=2), c=input_box(default=3), d=input_box(default=5), e=input_box(default=2), f=input_box(default=6), g=input_box(default=7), h=input_box(default=9), i=input_box(default=9)):
            R = IntegerModRing(26)
            M = MatrixSpace(R,3,3)
            a = M([[a,b,c],[d,e,f],[g,h,i]])
            print "The key:"
            print a
            message = []
            for char in coded_text:
                if char.isalpha():
                    message.append(char.lower())
            cipher_text = []
            for i in range(len(message)):
                cipher_text.append(dictt[message[i]]-1)
            new_text = []
            for i in range(len(cipher_text)-2):
                b = matrix(Integers(26),1,3,[cipher_text[i],cipher_text[i+1],cipher_text[i+2]])
                if i%3 ==0:
                    x = b*a.inverse()
                    x.column(0)
                    for i in x[:][0]:
                        new_text.append(i)
            final_text = ""
            for i in range(len(new_text)):
                new_text[i]=Integer(new_text[i])
                final_text += chr(97+new_text[i])
            print "The decrypted text:"
            print final_text
    if size=='4':
            print "Please input your encrypted message (In quotes) and your key:"
            @interact
            def four_decrypt(coded_text=input_box(default='"UIBBSMUGGXTX"'), a=input_box(default=17), b=input_box(default=8), c=input_box(default=7), d=input_box(default=10), e=input_box(default=0), f=input_box(default=17), g=input_box(default=5), h=input_box(default=8), i=input_box(default=18), j=input_box(default=12), k=input_box(default=6), l=input_box(default=17), m=input_box(default=0), n=input_box(default=15), o=input_box(default=0), p=input_box(default=17)):
                R = IntegerModRing(26)
                M = MatrixSpace(R,4,4)
                a = M([[a,b,c,d],[e,f,g,h],[i,j,k,l],[m,n,o,p]])
                print "The key:"
                print a
                message = []
                for char in coded_text:
                    if char.isalpha():
                        message.append(char.lower())
                cipher_text = []
                for i in range(len(message)):
                    cipher_text.append(dictt[message[i]]-1)
                new_text = []
                for i in range(len(cipher_text)-3):
                    b = matrix(Integers(26),1,4,[cipher_text[i],cipher_text[i+1],cipher_text[i+2],cipher_text[i+3]])
                    if i%4 ==0:
                        x = b*a.inverse()
                        x.column(0)
                        for i in x[:][0]:
                            new_text.append(i)
                final_text = ""
                for i in range(len(new_text)):
                    new_text[i]=Integer(new_text[i])
                    final_text += chr(97+new_text[i])
                print "The decrypted text:"
                print final_text
}}}


== Modular Arithmetic (Preliminaries for RSA, Diffie-Hellman, El Gamal) ==




=== Modular Arithmetic Multiplication Table ===

by Rebecca Lauren Miller, Kate Stange

{{{#!sagecell
#Last edited 8/9/19 at 12:30pm
print "This tool creates a multiplication table modulo 𝑛."
@interact
def modular_multiplication_tables(n = input_box(default = 7, width = 25)):
    R = IntegerModRing(n)
    rows = [['*']+[str(r) for r in R]]+[[i]+[i*r for r in R] for i in R]
    print table(rows, frame=True)
}}}

== RSA ==

Named for the authors Rivest, Shamir, Aldeman, RSA uses exponentiation and modular arithmetic to encrypt and decrypt messages between two parties. Each of those parties has their own secret and public key. To see how it works, following along while Alice and Babette share a message. -EG

=== RSA, From Alice's Perspective ===
by Sarah Arpin, Eva Goedhart

Babette sent Alice an encrypted message. You , as Alice, will provide information so that you can read Babette's message.

{{{#!sagecell
#Last edited 8/9/19 at 11:16am
print "Hi, Alice! Let's set up RSA together."
@interact
def rsa(p = input_box(default = 11,label = "p (>10): "), q = input_box(default = 23,label = "q (>10): "),e = input_box(default = 7,label = "e:")):
    print "************************************************************************************************"
    print "WARNINGS: p and q should be different primes, both larger than 10."
    print "e should be relatively prime to phi(pq). To check this, see the factorization of phi(pq) below."
    print "************************************************************************************************"
    print ""
    p = ZZ(p)
    q = ZZ(q)
    e = ZZ(e)
    phi = (p-1)*(q-1)
    print "phi(pq) = ",phi.factor()
    print ""
    N = p*q
    R = IntegerModRing(phi)
    d = (e^(R(e).multiplicative_order()-1)).mod(phi)
    print "Alice's public key is: N = pq =",N,", e =",e,"."
    print "Alice's private key is: p =",p,", q = ",q,", d = ",d,", where the decryption key d is the inverse of e modulo phi(N)."
    secret_message_from_babette = "Hi Dr. Strange!"
    ascii_secret = []
    for char in secret_message_from_babette:
        ascii_secret.append(ord(char))
    encrypted_ascii = []
    for ascii in ascii_secret:
        encrypted_ascii.append(power_mod(ascii,e,N))
    decrypted_ascii = []
    for ascii in encrypted_ascii:
        decrypted_ascii.append(power_mod(ascii,d,N))
    print "Babette's encrypted message to you is: ", encrypted_ascii
    print ""
    print "To decrypt, we raise each one of these to the ",d,", modulo ",N,":"
    print decrypted_ascii
    print ""
    decrypted_secret = ""
    for ascii in decrypted_ascii:
        decrypted_secret += chr(ascii)
    print "Going from ascii to letters, we figure out the secret is: "
    print decrypted_secret

}}}



=== RSA, From Babette's Perspective ===
by Sarah Arpin, Eva Goedhart

{{{#!sagecell
#Last edited 8/8/19 at 12:30pm
print "Hi, Babette! Let's send a message to Alice using RSA."
p = next_prime(100)
q = next_prime(p)
phi = (p-1)*(q-1)
e = 13
N = p*q
R = IntegerModRing(phi)
d = (e^(R(e).multiplicative_order()-1)).mod(phi)
print "Alice's public key is: N =",N,", e =",e,"."
message = raw_input("Type a message for Alice:")
ascii_secret = []
for char in message:
    ascii_secret.append(ord(char))
print "We turn these characters into ascii:"
print ascii_secret
print ""
print "Then we encode them by raising each ascii number to the e-th power modulo N."
encrypted_ascii = []
for ascii in ascii_secret:
    encrypted_ascii.append(power_mod(ascii,e,N))
print encrypted_ascii
print ""
@interact
def rsa():
    print "Alice receives our secret and uses her private key to decrypt the message."
    decrypted_ascii = []
    for ascii in encrypted_ascii:
        decrypted_ascii.append(power_mod(ascii,d,N))
    print decrypted_ascii
    print ""
    decrypted_secret = ""
    for ascii in decrypted_ascii:
        decrypted_secret += chr(ascii)
    print "Going from ascii to letters, she figures out your message was: "
    print decrypted_secret

}}}


=== RSA With Digital Signatures ===
by Sarah Arpin, Eva Goedhart

{{{#!sagecell

}}}

== Diffe-Hellman Key Exchange ==

Sage Interactions - Cryptography

This page was first created at Sage Days 103, 7-9 August 2019 by Sarah Arpin, Catalina Camacho-Navarro, Holly Paige Chaos, Amy Feaver, Eva Goedhart, Rebecca Lauren Miller, Alexis Newton, and Nandita Sahajpal. Text edited by Holly Paige Chaos, Amy Feaver, Eva Goedhart, and Alexis Newton. This project was led by Amy Feaver.

We acknowledge Katherine Stange, who allowed us to use code from her cryptography course as a starting point for many of these interacts. Dr. Stange's original code and course page can be found at http://crypto.katestange.net/

If you have cryptography-related interactions that you are interested in adding to this page, please do so. You can also contact Amy Feaver at [email protected]

goto interact main page

Shift Cipher

The shift cipher is a classical cryptosystem that takes plaintext and shifts it through the alphabet by a given number of letters. For example, a shift of 2 would replace all A's with C's, all B's with D's, etc. When the end of the alphabet is reached, the letters are shifted cyclically back to the beginning. Thus, a shift of 2 would replace Y's with A's and Z's with B's.

Shift Cipher Encryption

by Sarah Arpin, Alexis Newton

You can use this interact to encrypt a message with a shift cipher.

Shift Cipher Decryption

by Sarah Arpin, Alexis Newton

If you know that your message was encrypted using a shift cipher, you can use the known shift value to decrypt. If this is not known, brute force can be used to get 26 possible decrypted messages. The chi-squared function ranks the brute force results by likelihood according to letter frequency.

Affine Cipher

An affine cipher combines the idea of a shift cipher with a multiplicative cipher. In this particular example, we map consecutive letters of the alphabet to consecutive numbers, starting with A=0 (you can also do this cipher differently, and starting with A=1). The user selects two values, a and b. The value a is the multiplier and must be relatively prime to 26 in order to guarantee that each letter is encoded uniquely. The value b is the addend. Each letter's value is multiplied by a, and the product is added to b. This is then replaced with a new letter, corresponding to the result modulo 26.

Affine Cipher Encryption

by Sarah Arpin, Alexis Newton

You can use this interact to encrypt a message with the affine cipher. Notice that the only choices for a can be numbers that are relatively prime to 26. This cipher will encipher a letter m of your message as a*m + b.

Affine Cipher Decryption

by Sarah Arpin, Alexis Newton

If you know that your message was encrypted using an affine cipher, you can use the known a and b values to decrypt. If these are not known, brute force can be used to get a list of possible decrypted messages. The chi-squared function ranks these results by likelihood according to letter frequency.

Substitution Cipher

by Catalina Camacho-Navarro

A substitution cipher encrypts messages by assigning each letter of the alphabet to another letter. For instance, if A is assigned to F, then all A's in the original message will be substituted with F's in the encrypted message. Brute force or frequency analysis can be used to decrypt a message encrypted with a substitution cipher.

Playfair Cipher

by Catalina Camacho-Navarro

Based on code from Alasdair McAndrew at trac.sagemath.org/ticket/8559.

A playfair cipher is a special type of substitution cipher in which the plaintext is broken up into two-letter digraphs with some restrictions. Those digraphs are encrypted using a Polybius square, (i.e. a 5x5 grid in which each letter of the alphabet is its own entry with the exception of ij which are placed together). The positions of the letters in the digraph determine how the digraph is encrypted.

Frequency Analysis Tools

Frequency analysis is a technique for breaking a substitution cipher that utilizes the frequencies of letters appearing in the English language. For example, E is the most common letter in the English language, so if a piece of encrypted text had many instances of the letter Q, you would guess that Q had been substituted in for E. The next two interacts create a couple of basic tools that could be useful in cracking a substitution cipher.

Letter Frequency Counter

by Rebecca Lauren Miller, Katherine Stange

This tool looks at the percentage of appearances of each letter in the input text and plots these percentages. The encrypted input text is a bit strange, but was constructed by Amy Feaver to give a short block of text that matched the frequencies of letters in the English language relatively well, to make this message easier to decrypt.

Frequency Analysis Decryption Guesser

by Rebecca Lauren Miller, Katherine Stange

This interact prints a suggested translation of the input text by matching frequencies of letters in the input to frequencies of letters in the English language. With the output you will see that some letters were substituted in correctly, and others were not. Usually frequency analysis requires additional work and some trial and error to discover the original message, especially if the input text is not long enough.

Vigenère Cipher

A Vigenère cipher is an example of a polyalphabetic cipher. Using a secret codeword as the key, the Vigenère encrypts each letter of a message by shifting it according to the corresponding letter in the key. For example, we will use the key "CAT" to encrypt our default text "secrets hi". To do this the message is first broken up into three-letter chunks, because the key is three letters long, to be "SEC RET SHI". Next each letter of the chunk is shifted by the value of the corresponding letter in the key. The standard shifts are A=0, B=1, C=2, etc. So in our example, S shifts by C=2 letters to U, E shifts by A=0 letters and remains at E, and C shifts by T=19 letters to V. Thus "SECRETSHI" becomes UEVTEMUHB when encrypted. To decrypt the message, simply use the keyword to undo the encryption process. Cryptography by Simon Rubinstein-Salzedo was used as reference for this interact.

Vigenère Cipher Encryption

by Holly Paige Chaos, Rebecca Lauren Miller, Katherine Stange

Vigenère Cipher Decryption

by Holly Paige Chaos, Rebecca Lauren Miller, Katherine Stange

If you used the Vigenère Cipher to encrypt a message, you can use this interact to decrypt by inputting your key and encrypted text.

One-Time Pad

by Sarah Arpin, Alexis Newton

One-time pad is an encryption method that cannot be cracked, but requires a single-use shared key (known as a one-time pad) the length of the message or longer. In this method, every letter in the message is converted to numbers using the standard A=0, B=1, etc., and

Hill Cipher

Hill Cipher Encryption

by Holly Paige Chaos, Alexis Newton

Hill Cipher Decryption

by Holly Paige Chaos, Alexis Newton

Modular Arithmetic (Preliminaries for RSA, Diffie-Hellman, El Gamal)

Modular Arithmetic Multiplication Table

by Rebecca Lauren Miller, Kate Stange

RSA

Named for the authors Rivest, Shamir, Aldeman, RSA uses exponentiation and modular arithmetic to encrypt and decrypt messages between two parties. Each of those parties has their own secret and public key. To see how it works, following along while Alice and Babette share a message. -EG

RSA, From Alice's Perspective

by Sarah Arpin, Eva Goedhart

Babette sent Alice an encrypted message. You , as Alice, will provide information so that you can read Babette's message.

RSA, From Babette's Perspective

by Sarah Arpin, Eva Goedhart

RSA With Digital Signatures

by Sarah Arpin, Eva Goedhart

Diffe-Hellman Key Exchange

interact/cryptography (last edited 2019-11-14 19:53:51 by chapoton)