Differences between revisions 18 and 45 (spanning 27 versions)
Revision 18 as of 2019-08-08 16:55:19
Size: 5917
Editor: amy
Comment:
Revision 45 as of 2019-08-09 03:18:03
Size: 25023
Editor: amy
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
= Sage Interactions - Cryptography - Under Construction =



This page was be created at Sage Days 103, 7-10 August 2019 by Sarah Arpin, Catalina Camacho-Navarro, Holly Paige Chaos, Amy Feaver, Eva Goedhart, Rebecca Lauren Miller, Alexis Newton, and Nandita Sahajpal.

We would also like to acknowledge Katherine Stange, who allowed us to use some of the code from her cryptography course as a starting point for many of these interacts. Dr. Stange's code original code can be found at http://crypto.katestange.net/
= Sage Interactions - Cryptography =



This page was first created at Sage Days 103, 7-10 August 2019 by Sarah Arpin, Catalina Camacho-Navarro, Holly Paige Chaos, Amy Feaver, Eva Goedhart, Rebecca Lauren Miller, Alexis Newton, and Nandita Sahajpal.

We would also like to acknowledge Katherine Stange, who allowed us to use code from her cryptography course as a starting point for many of these interacts. Dr. Stange's original code and course page can be found at http://crypto.katestange.net/
Line 20: Line 20:
The shift cipher is a classical cryptosystem that takes plaintext and shifts it through the alphabet by a given number of letters. -EG The shift cipher is a classical cryptosystem that takes plaintext and shifts it through the alphabet by a given number of letters. -EG   For example, a shift of 2 would replace all A's with C's, all B's with D's, etc. When you reach the end of the alphabet, the letters are shifted cyclically back to the beginning. Thus, a shift of 2 would replace Y's with A's and Z's with B's. -AF
Line 36: Line 38:
Line 63: Line 66:
An affine cipher combines the idea of a shift cipher with a multiplicative cipher. In this particular example, we map consecutive letters of the alphabet to consecutive numbers, starting with A=0 (you can also do this cipher differently, and starting with A=1). The user selects two values, a and b. The value a is the multiplier and must be relatively prime to 26 in order to guarantee that each letter is encoded uniquely. The value b is the addend. Each letter's value is multiplied by a, and the product is added to b. This is then replaced with a new letter, corresponding to the result modulo 26. -AF

=== Affine Cipher Encryption ===
Line 79: Line 85:

=== Affine Cipher Decryption ===

{{{#!sagecell
#Last edited 8/7/2019 3:01pm
print "Enter the encrypted text in quotes, and enter a guess for the a and the b:"
@interact
def shift_decrypt(text = input_box('"XNSILPCVA"'), a=[1,3,5,7,9,11,15,17,19,21,23,25], b =[0..25]):
    S = AffineCryptosystem(AlphabeticStrings())
    ciphertext = S.encoding(text)
    decrypt = S.deciphering(a,b,ciphertext)
    print "If the a =", a, "and the b =",b, ", then the original message was:"
    print decrypt
    decrypt = S.brute_force(ciphertext,ranking="none")
    print "\nThese are the possibilities for the plaintext:"
    print decrypt
    decrypt = S.brute_force(ciphertext,ranking = "chisquare")[:10]
    print "\nThese are the top 10 possibilities ranked by likelihood with the chi-squared function:"
    print decrypt
}}}

Line 86: Line 114:
}}}

=== Playfair Cipher ===

A special type of substitution cipher in which the plaintext is broken up into two-letter digraphs with some restrictions. Those digraphs are encrypted using a Polybius square, (i.e. a 5x5 grid in which each letter of the alphabet is its own entry with the exception of ij which are placed together). The positions of the letters in the digraph determine how the digraph is encrypted.


{{{#!sagecell

}}}

== Frequency Analysis Decryption Tool ==

{{{#!sagecell

}}}

== Playfair Cipher ==

by Catalina Camacho-Navarro

Based on code from Alasdair McAndrew at trac.sagemath.org/ticket/8559

A special type of substitution cipher in which the plaintext is broken up into two-letter digraphs with some restrictions. Those digraphs are encrypted using a Polybius square, (i.e. a 5x5 grid in which each letter of the alphabet is its own entry with the exception of ij which are placed together). The positions of the letters in the digraph determine how the digraph is encrypted. -EF

{{{#!sagecell
##PLAYFAIR CIPHER

def change_to_plain_text(pl):
    plaintext=''
    for ch in pl:
        if ch.isalpha():
            plaintext+=ch.upper()
    return plaintext

def makePF(word1): #creates 5 x 5 Playfair array beginning with "word"
    word=change_to_plain_text(word1)
    alph='ABCDEFGHIKLMNOPQRSTUVWXYZ'
    pf=''
    for ch in word:
        if (ch<>"J") & (pf.find(ch)==-1): # ensures no letter is repeated
            pf+=ch
    for ch in alph:
        if pf.find(ch)==-1: #only uses unused letters from alph
            pf+=ch
    PF=[[pf[5*i+j] for j in range(5)] for i in range(5)]
    return PF

def pf_encrypt(di,PF): # encrypts a digraph di with a Playfair array PF
    for i in range(5):
        for j in range(5):
            if PF[i][j]==di[0]:
                i0=i
                j0=j
            if PF[i][j]==di[1]:
                i1=i
                j1=j
    if (i0<>i1) & (j0<>j1):
        return PF[i0][j1]+PF[i1][j0]
    if (i0==i1) & (j0<>j1):
        return PF[i0][(j0+1)%5]+PF[i1][(j1+1)%5]
    if (i0<>i1) & (j0==j1):
        return PF[(i0+1)%5][j0]+PF[(i1+1)%5][j1]

def insert(ch,str,j): # a helper function: inserts a character "ch" into
    tmp='' # a string "str" at position j
    for i in range(j):
        tmp+=str[i]
    tmp+=ch
    for i in range(len(str)-j):
        tmp+=str[i+j]
    return tmp


def playfair(pl1,word): # encrypts a plaintext "pl" with a Playfair cipher
    pl=change_to_plain_text(pl1)
    PF=makePF(word) # using a keyword "word"
    pl2=makeDG(pl)
    tmp=''
    for i in range(len(pl2)//2):
        tmp+=pf_encrypt(pl2[2*i]+pl2[2*i+1],PF)
    return tmp

def makeDG(str): # creates digraphs with different values from a string "str"
    tmp=str.replace('J','I') # replace all 'J's with 'I's
    c=len(tmp)
    i=0
    while (c>0) & (2*i+1<len(tmp)):
        if tmp[2*i]==tmp[2*i+1]:
            tmp=insert("X",tmp,2*i+1)
            c-=1
            i+=1
        else:
            c-=2
            i+=1
    if len(tmp)%2==1:
        tmp+='X'
    return tmp

print('Enter your message and the key to construct you polybius square. Warning: both the message and the key must be in quotes.')
@interact
def _(Message=input_box(default="'message'"),Key=input_box(default="'key'"),showmatrix=checkbox(True, label='Show polybius square')):
    
    if showmatrix:
        poly=makePF(Key)
        for i in range(5):
            print(poly[i])
    
    print '\nCiphertext:',playfair(Message,Key)
}}}

== Frequency Analysis Tools ==

Frequency analysis is a technique for breaking a substitution cipher that is based on the frequencies that letters appear (in large chunks of text) in the English language. For example, E is the most common letter in the English language, so if a piece of encrypted text had many instances of the letter Q, you would guess that Q had been substituted in for E. The next two interacts create a couple of basic tools that could be useful in cracking a substitution cipher. -AF


=== Letter Frequency Counter ===

by Rebecca Lauren Miller, Katherine Stange

This tool looks at the percentage of appearances of each letter in the input text, and plots these percentages. The encrypted input text is a bit strange, but was constructed by Amy Feaver to give a short block text that matched the frequencies of letters in English relatively well, to make this message easier to decrypt. -AF

{{{#!sagecell
#Last Edited 8/8/19 at 2:36pm


print "This interact prints a bar graph of the distribution of the letters in the input text. Warning: the smaller the input text the less accurate the distribution will be. Letters that do not occur will not appear in the graph."
# Initial text is "Greetiiiings my name is Weeegbert Deuce the True Eater of the Toupee. Hear ye, hear ye! Dee dee dee. A head of these liger cubs carrying the trippy tomahawks are coming fo' thee. Take shelters in the tombs. Tammy ran to the other townspeople and aardvarks. What is her ETA? Her ETA please! Toil, bring your food cups and oil and be swift. The women and the child Occotion CIII should pick bamboo at Atitisoting. See? Nanna Wu Shacah's inner noodle cups: not nuutty sesame notions."
@interact
def frequencyAnalysis(text = input_box('"Nyllappppunz tf uhtl pz Dlllnilya Klbjl aol Aybl Lhaly vm aol Avbwll. Olhy fl, olhy fl! Kll kll kll. H olhk vm aolzl spnly jbiz jhyyfpun aol aypwwf avthohdrz hyl jvtpun mv aoll. Ahrl zolsalyz pu aol avtiz. Ahttf yhu av aol vaoly avduzwlvwsl huk hhykchyrz. Doha pz oly LAH? Oly LAH wslhzl! Avps, iypun fvby mvvk jbwz huk vps huk il zdpma. Aol dvtlu huk aol jopsk Vjjvapvu JPPP zovbsk wpjr ihtivv ha Hapapzvapun. Zll.Uhuuh Db Zohjho z puuly uvvksl jbwz: uva ubbaaf zlzhtl uvapvuz."', width = 150)):
    alphabet = AlphabeticStrings()
    englishText = alphabet.encoding(text)
    distribution = englishText.frequency_distribution()
    L1 = englishText.frequency_distribution().function()
    L1=[x for x in L1.items()]
    L1.sort(key=lambda x:x[0])
    labels, ys = zip(*L1)
    import numpy as np
    import math
    from matplotlib import pyplot as plt
    xs = np.arange(len(labels))
    plt.bar(xs, ys, align='center')
    plt.xticks(xs, labels) #Replace default x-ticks with xs, then replace xs with labels
    plt.ylim(0,.2)
    plt.yticks(ys)
    plt.xlabel('Letters (Some may be missing)')
    plt.ylabel('Frequency')
    plt.show()

}}}


=== Frequency Analysis Decryption Guesser ===

by Rebecca LaurenMiller, Kate Stange

This interact prints suggested translation of the input text, by matching frequencies of letters in the input to letter frequencies in the English language. With the output you will see that some letters were substituted in correctly, and others were not. Usually frequency analysis requires additional work and some trial and error to discover the original message, especially if the input text is not long enough. -AF

{{{#!sagecell
#Last edited 8/8/19 at 2:54pm

print "Warning: the shorter the input text the less accuate the distribution will be."
@interact
# Initial text is "Greetiiiings my name is Weeegbert Deuce the True Eater of the Toupee. Hear ye, hear ye! Dee dee dee. A head of these liger cubs carrying the trippy tomahawks are coming fo' thee. Take shelters in the tombs. Tammy ran to the other townspeople and aardvarks. What is her ETA? Her ETA please! Toil, bring your food cups and oil and be swift. The women and the child Occotion CIII should pick bamboo at Atitisoting. See? Nanna Wu Shacah's inner noodle cups: not nuutty sesame notions."
def frequencyAnalysis(text = input_box('"Nyllappppunz tf uhtl pz Dlllnilya Klbjl aol Aybl Lhaly vm aol Avbwll. Olhy fl, olhy fl! Kll kll kll. H olhk vm aolzl spnly jbiz jhyyfpun aol aypwwf avthohdrz hyl jvtpun mv aoll. Ahrl zolsalyz pu aol avtiz. Ahttf yhu av aol vaoly avduzwlvwsl huk hhykchyrz. Doha pz oly LAH? Oly LAH wslhzl! Avps, iypun fvby mvvk jbwz huk vps huk il zdpma. Aol dvtlu huk aol jopsk Vjjvapvu JPPP zovbsk wpjr ihtivv ha Hapapzvapun. Zll.Uhuuh Db Zohjho z puuly uvvksl jbwz: uva ubbaaf zlzhtl uvapvuz."', width = 150)):
    alphabet= AlphabeticStrings()
    englishText =alphabet.encoding(text)
    L1 = englishText.frequency_distribution().function()
    L1=[x for x in L1.items()]
    L1.sort(key=lambda x:x[1],reverse=True)
    alphafreq = ['E','T','A','O','I','N','S','H','R','D','L','U','C','M','F','W','Y','P','V','B','G','K','J','Q','X','Z']
    translator={}
    for i in range(0, len(L1)):
        translator.update({str(L1[i][0]):alphafreq[i]})
        answer=""
    print "\nThe suggested substitutions, based on letter frequency are:"
    print translator
    for char in englishText:
        answer+= translator[str(char)]
    print "\nThe suggested translation is:\n", answer
Line 104: Line 283:
by Holly Paige Chaos, Rebecca Lauren Miller, and Kate Stange by Holly Paige Chaos, Rebecca Lauren Miller, Katherine Stange
Line 111: Line 290:
#This encrypts your message: Final 8/7/19. Written by Rebecca Lauren Miller, Holly Paige Chaos, Kate Strange. #This encrypts your message: Final 8/7/19. Written by Rebecca Lauren Miller, Holly Paige Chaos, Katherine Stange.
Line 127: Line 306:
#This decrypts your message: Final 8/7/19. Written by Rebecca Lauren Miller, Holly Paige Chaos, Kate Strange. #This decrypts your message: Final 8/7/19. Written by Rebecca Lauren Miller, Holly Paige Chaos, Katherine Stange.
Line 140: Line 319:

== One-Time Pad ==

by Sarah Arpin, Alexis Newton


{{{#!sagecell
#Last edited 8/7/2019 5:12pm
from random import randrange
dictt = {'a':1,'b':2,'c':3,'d':4,'e':5,'f':6,'g':7,'h':8,
    'i':9,'j':10,'k':11,'l':12,'m':13,'n':14,'o':15,'p':16,'q':17,
    'r':18,'s':19,'t':20,'u':21,'v':22,'w':23,'x':24,'y':25,'z':26
    }
print "Enter your message to be encrypted via one-time pad in the Plain Text box below:"
@interact
def one_time_pad(plain_text = input_box("'message'",label="Plain Text:")):
    #This code takes in a plain text, converts all of the letters to numbers, and then creates a one-time pad for encryption
    message = []
    for char in plain_text:
        if char.isalpha():
            message.append(char.lower())
    size = len(message)
    one_time_pad = []
    for i in range(size):
        one_time_pad.append(randrange(26))
    cipher_text = []
    for i in range(size):
        cipher_text.append(1+(dictt[message[i]] + one_time_pad[i]).mod(26))
    letter_cipher_text=""
    for i in cipher_text:
        letter_cipher_text += (chr(i+96))
    print "Your one-time pad is:"
    print one_time_pad
    print ""
    print "Your encrypted message is:"
    print letter_cipher_text
}}}
Line 141: Line 358:
by Holly Paige Chaos and Rebecca Lauren Miller



{{{#!sagecell
by Holly Paige Chaos, Alexis Newton

{{{#!sagecell
#Last edited 8/8/19 at 1:47pm

pretty_print(html('<h2>Hill Cipher Encryptor</h2>'))
print "Please input the size of your key:"
@interact
def hill_cipher(Size=['2','3','4']):
    if Size=='2':
        print "Please input your message (in quotes) and numbers for your key:"
        @interact
        def two_matrix(message=input_box(default='"Alexis smells"'), a=input_box(default=1), b=input_box(default=3), c=input_box(default=3), d=input_box(default=4)):
            S = AlphabeticStrings()
            E = HillCryptosystem(S,Size)
            R = IntegerModRing(26)
            M = MatrixSpace(R,Size,Size)
            A = M([[a,b],[c,d]])
            print "This is your key:"
            print A
            invertible = A.is_invertible()
            if invertible==false:
                print "WARNING! You will not be able to decrypt this message because your matrix is not invertible."
            e = E(A)
            message=E.encoding(message)
            print "This is your encrypted message:"
            print e(S(message))
    if Size=='3':
        print "Please input your message (in quotes) and the numbers in your square matrix key:"
        @interact
        def three_matrix(message=input_box(default='"Alexis smells"'), a=input_box(default=1), b=input_box(default=2), c=input_box(default=3), d=input_box(default=5), e=input_box(default=2), f=input_box(default=6), g=input_box(default=7), h=input_box(default=9), i=input_box(default=9)):
            S = AlphabeticStrings()
            E = HillCryptosystem(S,3)
            R = IntegerModRing(26)
            M = MatrixSpace(R,3,3)
            A = M([[a,b,c],[d,e,f],[g,h,i]])
            print "This is your key:"
            print A
            invertible = A.is_invertible()
            if invertible==false:
                print "WARNING! You will not be able to decrypt this message because your matrix is not invertible."
            e = E(A)
            message=E.encoding(message)
            print "This is your encrypted message:"
            print e(S(message))
    if Size=='4':
        print "Please input your message (in quotes) and the numbers in your square matrix key:"
        @interact
        def four_matrix(message=input_box(default='"Alexis smells"'), a=input_box(default=17), b=input_box(default=8), c=input_box(default=7), d=input_box(default=10), e=input_box(default=0), f=input_box(default=17), g=input_box(default=5), h=input_box(default=8), i=input_box(default=18), j=input_box(default=12), k=input_box(default=6), l=input_box(default=17), m=input_box(default=0), n=input_box(default=15), o=input_box(default=0), p=input_box(default=17)):
            S = AlphabeticStrings()
            E = HillCryptosystem(S,4)
            R = IntegerModRing(26)
            M = MatrixSpace(R,4,4)
            A = M([[a,b,c,d],[e,f,g,h],[i,j,k,l],[m,n,o,p]])
            print "This is your key:"
            print A
            invertible = A.is_invertible()
            if invertible==false:
                print "WARNING! You will not be able to decrypt this message because your matrix is not invertible."
            e = E(A)
            message=E.encoding(message)
            print "This is your encrypted message:"
            print e(S(message))
}}}




{{{#!sagecell
#Last edited 8/8/19 at 1:47pm
pretty_print(html('<h2>Hill Cipher Decryptor</h2>'))
dictt = {'a':1,'b':2,'c':3,'d':4,'e':5,'f':6,'g':7,'h':8,
    'i':9,'j':10,'k':11,'l':12,'m':13,'n':14,'o':15,'p':16,'q':17,
    'r':18,'s':19,'t':20,'u':21,'v':22,'w':23,'x':24,'y':25,'z':26
    }
print "Please select the size of your key:"
@interact
def decrypt_hill(size=['2','3','4']):
    if size=='2':
        print "Please input your encrypted message and your key:"
        @interact
        def two_decrypt(coded_text=input_box(default='"HSVAKSCYLENB"'), a=input_box(default=1), b=input_box(default=3), c=input_box(default=3), d=input_box(default=4)):
            R = IntegerModRing(26)
            M = MatrixSpace(R,2,2)
            a = M([[a,b],[c,d]])
            print "The key:"
            print a
            message = []
            for char in coded_text:
                if char.isalpha():
                    message.append(char.lower())
            cipher_text = []
            for i in range(len(message)):
                cipher_text.append(dictt[message[i]]-1)
            new_text = []
            for i in range(len(cipher_text)-1):
                b = matrix(Integers(26),1,2,[cipher_text[i],cipher_text[i+1]])
                if i%2 ==0:
                    x = b*a.inverse()
                    x.column(0)
                    for i in x[:][0]:
                        new_text.append(i)
            final_text = ""
            for i in range(len(new_text)):
                new_text[i]=Integer(new_text[i])
                final_text += chr(97+new_text[i])
            print "The decrypted text:"
            print final_text
    if size=='3':
        print "Please input your encrypted message and your key:"
        @interact
        def three_decrypt(coded_text=input_box(default='"FGYHQTCSGKYB"'), a=input_box(default=1), b=input_box(default=2), c=input_box(default=3), d=input_box(default=5), e=input_box(default=2), f=input_box(default=6), g=input_box(default=7), h=input_box(default=9), i=input_box(default=9)):
            R = IntegerModRing(26)
            M = MatrixSpace(R,3,3)
            a = M([[a,b,c],[d,e,f],[g,h,i]])
            print "The key:"
            print a
            message = []
            for char in coded_text:
                if char.isalpha():
                    message.append(char.lower())
            cipher_text = []
            for i in range(len(message)):
                cipher_text.append(dictt[message[i]]-1)
            new_text = []
            for i in range(len(cipher_text)-2):
                b = matrix(Integers(26),1,3,[cipher_text[i],cipher_text[i+1],cipher_text[i+2]])
                if i%3 ==0:
                    x = b*a.inverse()
                    x.column(0)
                    for i in x[:][0]:
                        new_text.append(i)
            final_text = ""
            for i in range(len(new_text)):
                new_text[i]=Integer(new_text[i])
                final_text += chr(97+new_text[i])
            print "The decrypted text:"
            print final_text
    if size=='4':
            print "Please input your encrypted message (In quotes) and your key:"
            @interact
            def four_decrypt(coded_text=input_box(default='"UIBBSMUGGXTX"'), a=input_box(default=17), b=input_box(default=8), c=input_box(default=7), d=input_box(default=10), e=input_box(default=0), f=input_box(default=17), g=input_box(default=5), h=input_box(default=8), i=input_box(default=18), j=input_box(default=12), k=input_box(default=6), l=input_box(default=17), m=input_box(default=0), n=input_box(default=15), o=input_box(default=0), p=input_box(default=17)):
                R = IntegerModRing(26)
                M = MatrixSpace(R,4,4)
                a = M([[a,b,c,d],[e,f,g,h],[i,j,k,l],[m,n,o,p]])
                print "The key:"
                print a
                message = []
                for char in coded_text:
                    if char.isalpha():
                        message.append(char.lower())
                cipher_text = []
                for i in range(len(message)):
                    cipher_text.append(dictt[message[i]]-1)
                new_text = []
                for i in range(len(cipher_text)-3):
                    b = matrix(Integers(26),1,4,[cipher_text[i],cipher_text[i+1],cipher_text[i+2],cipher_text[i+3]])
                    if i%4 ==0:
                        x = b*a.inverse()
                        x.column(0)
                        for i in x[:][0]:
                            new_text.append(i)
                final_text = ""
                for i in range(len(new_text)):
                    new_text[i]=Integer(new_text[i])
                    final_text += chr(97+new_text[i])
                print "The decrypted text:"
                print final_text
Line 159: Line 539:

== One-time Pad ==

Sage Interactions - Cryptography

This page was first created at Sage Days 103, 7-10 August 2019 by Sarah Arpin, Catalina Camacho-Navarro, Holly Paige Chaos, Amy Feaver, Eva Goedhart, Rebecca Lauren Miller, Alexis Newton, and Nandita Sahajpal.

We would also like to acknowledge Katherine Stange, who allowed us to use code from her cryptography course as a starting point for many of these interacts. Dr. Stange's original code and course page can be found at http://crypto.katestange.net/

If you have cryptography-related interactions that you are interested in adding to this page, please do so. You can also contact Amy Feaver at [email protected]

goto interact main page

Shift Cipher

by Sarah Arpin, Alexis Newton

The shift cipher is a classical cryptosystem that takes plaintext and shifts it through the alphabet by a given number of letters. -EG

For example, a shift of 2 would replace all A's with C's, all B's with D's, etc. When you reach the end of the alphabet, the letters are shifted cyclically back to the beginning. Thus, a shift of 2 would replace Y's with A's and Z's with B's. -AF

Shift Cipher Encryption

Shift Cipher Decryption

If you know that your message was encrypted using a shift cipher, you can use the known shift value to decrypt. If this is not known, brute force can be used to get 26 possible decrypted messages.

Affine Cipher

by Sarah Arpin, Alexis Newton

An affine cipher combines the idea of a shift cipher with a multiplicative cipher. In this particular example, we map consecutive letters of the alphabet to consecutive numbers, starting with A=0 (you can also do this cipher differently, and starting with A=1). The user selects two values, a and b. The value a is the multiplier and must be relatively prime to 26 in order to guarantee that each letter is encoded uniquely. The value b is the addend. Each letter's value is multiplied by a, and the product is added to b. This is then replaced with a new letter, corresponding to the result modulo 26. -AF

Affine Cipher Encryption

Affine Cipher Decryption

Substitution Cipher

by Catalina Camacho-Navarro

A simple cipher to encrypt messages in which each letter is assigned to another letter. Brute force or frequency analysis can be used to decrypt. -EG

Playfair Cipher

by Catalina Camacho-Navarro

Based on code from Alasdair McAndrew at trac.sagemath.org/ticket/8559

A special type of substitution cipher in which the plaintext is broken up into two-letter digraphs with some restrictions. Those digraphs are encrypted using a Polybius square, (i.e. a 5x5 grid in which each letter of the alphabet is its own entry with the exception of ij which are placed together). The positions of the letters in the digraph determine how the digraph is encrypted. -EF

Frequency Analysis Tools

Frequency analysis is a technique for breaking a substitution cipher that is based on the frequencies that letters appear (in large chunks of text) in the English language. For example, E is the most common letter in the English language, so if a piece of encrypted text had many instances of the letter Q, you would guess that Q had been substituted in for E. The next two interacts create a couple of basic tools that could be useful in cracking a substitution cipher. -AF

Letter Frequency Counter

by Rebecca Lauren Miller, Katherine Stange

This tool looks at the percentage of appearances of each letter in the input text, and plots these percentages. The encrypted input text is a bit strange, but was constructed by Amy Feaver to give a short block text that matched the frequencies of letters in English relatively well, to make this message easier to decrypt. -AF

Frequency Analysis Decryption Guesser

by Rebecca LaurenMiller, Kate Stange

This interact prints suggested translation of the input text, by matching frequencies of letters in the input to letter frequencies in the English language. With the output you will see that some letters were substituted in correctly, and others were not. Usually frequency analysis requires additional work and some trial and error to discover the original message, especially if the input text is not long enough. -AF

Vigenère Cipher

by Holly Paige Chaos, Rebecca Lauren Miller, Katherine Stange

Using a secret code word, encrypt each letter by shifting it the corresponding letter in the code word. -EG

Vigenère Cipher Encryption

Vigenère Cipher Decryption

One-Time Pad

by Sarah Arpin, Alexis Newton

Hill Cipher

by Holly Paige Chaos, Alexis Newton

RSA

Named for the authors Rivest, Shamir, Aldeman, RSA uses exponentiation and modular arithmetic to encrypt and decrypt messages between two parties. Each of those parties has their own secret and public key. To see how it works, following along while Alicia and Bernadette share a message. -EG

Diffe-Hellman Key Exchange

interact/cryptography (last edited 2019-11-14 19:53:51 by chapoton)