Differences between revisions 13 and 24 (spanning 11 versions)
Revision 13 as of 2007-02-19 12:26:44
Size: 4186
Editor: anonymous
Comment:
Revision 24 as of 2007-06-17 22:08:56
Size: 12185
Editor: anonymous
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
Emily Kirkman is working on this project.

The goal of the Graph Generators Class is to implement constructors for many common graphs, as well as thorough docstrings that can be used for reference. The graph generators will grow as the Graph Theory Project does. So please check back for additions and feel free to leave requests in the suggestions section.  

We currently have 30 constructors of named graphs and basic structures. Most of these graphs are constructed with a preset dictionary of x-y coordinates of each node. This is advantageous for both style and time. (The default graph plotting in SAGE using the spring-layout algorithm). SAGE graphs all have an associated graphics object, and examples of plotting options are shown on the graphs below.
attachment:A5.jpg

Emily Kirkman is working on this project. Robert Miller did a lot of work on it too. [http://sage.math.washington.edu:9001/graph Back to main wiki.]

The goal of the Graph Generators Class is to implement constructors for many common graphs, as well as thorough docstrings that can be used for reference. The graph generators will grow as the Graph Theory Project does. So please check back for additions and feel free to leave requests in the suggestions section.

We currently have 54 constructors of named graphs and basic structures. Most of these graphs are constructed with a preset dictionary of x-y coordinates of each node. This is advantageous for both style and time. (The default graph plotting in SAGE uses the spring-layout algorithm). SAGE graphs all have an associated graphics object, and examples of plotting options are shown on the graphs below.
Line 9: Line 11:
Due to the volume of graphs now in the generators class, this wiki page is now intended to give status updates and serve as a gallery of graphs currently implemented. To see information on a specific graph, run SAGE or the SAGE [http://sage.math.washington.edu:8100 notebook]. For a list of graph constructos, type "graphs." and hit tab. For docstrings, type the graph name and one question mark (i.e.: "graphs.!CubeGraph?") then shift + enter. For source code, do likewise with two question marks.

The SAGE [http://sage.math.washington.edu:9001/graph Graph Theory Project] aims to implement Graph objects and algorithms in ["SAGE"].
Due to the volume of graphs now in the generators class, this wiki page is now intended to give status updates and serve as a gallery of graphs currently implemented. To see information on a specific graph, run SAGE or the SAGE [http://sage.math.washington.edu:8100 notebook]. For a list of graph constructors, type "graphs." and hit tab. For docstrings, type the graph name and one question mark (i.e.: "graphs.!CubeGraph?") then shift + enter. For source code, do likewise with two question marks.
Line 22: Line 22:
 * Balanced tree
 * Dorogovstev golstev mendes graph
Line 25: Line 23:
 * Chvatal
 * Desargues
 * Pappus
Line 32: Line 27:
 * Also many more random generators and gens from degree sequence to sort through
Line 44: Line 38:
 * Icosahedron
Line 56: Line 49:
=== Chvatal Graph ===
{{{
sage: (graphs.ChvatalGraph()).show(figsize=[4,4], graph_border=True)
}}}
attachment:chvatal.png

=== Desargues Graph ===
{{{
sage: (graphs.DesarguesGraph()).show(figsize=[4,4], graph_border=True)
}}}
attachment:desargues.png
Line 62: Line 67:
attachment:flower.png
Line 66: Line 71:

}}}
sage: frucht = graphs.FruchtGraph()
sage: frucht.show(figsize=[4,4], graph_border=True)
}}}
attachment:frucht.png
Line 72: Line 78:

}}}


=== Moebius Kantor ===
{{{

}}}
sage: heawood = graphs.HeawoodGraph()
sage: heawood.show(figsize=[4,4], graph_border=True)
}}}
attachment:heawood.png

=== Möbius Kantor ===
{{{
sage: moebius_kantor = graphs.MoebiusKantorGraph()
sage: moebius_kantor.show(figsize=[4,4], graph_border=True)
}}}
attachment:moebiuskantor.png

=== Pappus Graph ===
{{{
sage: (graphs.PappusGraph()).show(figsize=[4,4], graph_border=True)
}}}
attachment:pappus.png
Line 84: Line 98:

}}}
sage: petersen = graphs.PetersenGraph()
sage: petersen.show(figsize=[4,4], graph_border=True)
}}}
attachment:petersen.png
Line 90: Line 105:

}}}
sage: thomsen = graphs.ThomsenGraph()
sage: thomsen.show(figsize=[4,4], graph_border=True)
}}}
attachment:thomsen.png
Line 98: Line 114:

}}}
sage: comp_bip_list = []
sage: for i in range (2):
... for j in range (4):
... comp_bip_list.append(graphs.CompleteBipartiteGraph(i+3,j+1))
...
sage: graphs_list.show_graphs(comp_bip_list)
}}}
attachment:compbip.png
Line 104: Line 125:

}}}
sage: comp_list = []
sage: for i in range(13)[1:]:
... comp_list.append(graphs.CompleteGraph(i))
...
sage: graphs_list.show_graphs(comp_list)
}}}
attachment:complete.png
Line 110: Line 135:

}}}
sage: cube_list = []
sage: for i in range(6)[2:]:
... cube_list.append(graphs.CubeGraph(i))
...
sage: graphs_list.show_graphs(cube_list)
}}}
attachment:cube.png

{{{
sage: bigger_cube = graphs.CubeGraph(8)
sage: bigger_cube.show(figsize=[8,8], node_size=20, vertex_labels=False, graph_border=True)
}}}
attachment:biggercube.png

=== Balanced Tree ===
{{{
sage: (graphs.BalancedTree(3,5)).show(node_size=20, vertex_labels=False, figsize=[4,4], graph_border=True)
}}}
attachment:baltree.png

=== LCF Graph ===
{{{
sage: (graphs.LCFGraph(20, [-10,-7,-5,4,7,-10,-7,-4,5,7,-10,-7,6,-5,7,-10,-7,5,-6,7], 1)).show(figsize=[4,4], graph_border=True)
}}}
attachment:lcf.png

== Platonic Solids ==

=== Tetrahedral Graph ===
{{{
sage: tetrahedral = graphs.TetrahedralGraph()
sage: tetrahedral.show(figsize=[4,4], graph_border=True)
}}}
attachment:tetrahedral.png

=== Hexahedral Graph ===
{{{
sage: (graphs.HexahedralGraph()).show(figsize=[4,4], graph_border=True)
}}}
attachment:hexahedral.png

=== Octahedral Graph ===
{{{
sage: octahedral = graphs.OctahedralGraph()
sage: octahedral.show(figsize=[4,4], vertex_labels=False, node_size=50, graph_border=True)
}}}
attachment:octahedral.png

=== Icosahedral Graph ===
{{{
sage: (graphs.IcosahedralGraph()).show(figsize=[4,4], graph_border=True)
}}}
attachment:icosahedral.png

=== Dodecahedral Graph ===
{{{
sage: dodecahedral = graphs.DodecahedralGraph()
sage: dodecahedral.show(figsize=[4,4], vertex_labels=False, node_size=50, graph_border=True)
}}}
attachment:dodecahedral.png

== Pseudofractal Graphs ==

=== Dorogovtsev Goltsev Mendes Graph ===
{{{
sage: (graphs.DorogovtsevGoltsevMendesGraph(5)).show(figsize=[4,4], graph_border=True, vertex_size=10, vertex_labels=False)
}}}
attachment:tmp_6.png
Line 118: Line 208:

}}}
sage: barbell_list = []
sage: for i in range (4):
... for j in range (2):
... barbell_list.append(graphs.BarbellGraph(i+3, j+2))
...
sage: graphs_list.show_graphs(barbell_list)
}}}
attachment:barbell.png
Line 124: Line 219:

}}}
sage: bull = graphs.BullGraph()
sage: bull.show(figsize=[4,4], graph_border=True)
}}}
attachment:bull.png
Line 130: Line 226:

}}}
sage: circ_ladder = graphs.CircularLadderGraph(9)
sage: circ_ladder.show(figsize=[4,4], graph_border=True)
}}}
attachment:circladder.png
Line 136: Line 233:

}}}
sage: claw = graphs.ClawGraph()
sage: claw.show(figsize=[4,4], graph_border=True)
}}}
attachment:claw.png
Line 142: Line 240:

}}}
sage: cycle = graphs.CycleGraph(17)
sage: cycle.show(figsize=[4,4], graph_border=True)
}}}
attachment:cycle.png
Line 148: Line 247:

}}}


=== Dodecahedral Graph ===
{{{

}}}
sage: diamond = graphs.DiamondGraph()
sage: diamond.show(figsize=[4,4], graph_border=True)
}}}
attachment:diamond.png
Line 160: Line 254:

}}}
sage: empty = graphs.EmptyGraph()
sage: empty.show(figsize=[1,1], graph_border=True)
}}}
attachment:empty.png
Line 166: Line 261:

}}}
sage: grid = graphs.Grid2dGraph(3,5)
sage: grid.show(figsize=[5,3])
}}}
attachment:grid.png
Line 172: Line 268:

}}}
sage: house = graphs.HouseGraph()
sage: house.show(figsize=[4,4], graph_border=True)
}}}
attachment:house.png
Line 178: Line 275:

}}}
sage: houseX = graphs.HouseXGraph()
sage: houseX.show(figsize=[4,4], graph_border=True)
}}}
attachment:housex.png
Line 184: Line 282:

}}}
sage: krackhardt = graphs.KrackhardtKiteGraph()
sage: krackhardt.show(figsize=[4,4], graph_border=True)
}}}
attachment:krack.png
Line 190: Line 289:

}}}
sage: ladder = graphs.LadderGraph(5)
sage: ladder.show(figsize=[4,4], graph_border=True)
}}}
attachment:ladder.png
Line 196: Line 296:

}}}


=== Octahedral Graph ===
{{{

}}}
sage: lollipop_list = []
sage: for i in range (4):
... for j in range (2):
... lollipop_list.append(graphs.LollipopGraph(i+3, j+2))
...
sage: graphs_list.show_graphs(lollipop_list)
}}}
attachment:lollipop.png
Line 208: Line 307:

}}}
sage: path_line = graphs.PathGraph(5)
sage: path_circle = graphs.PathGraph(15)
sage: path_maze = graphs.PathGraph(45)
sage: path_list = [path_line, path_circle, path_maze]
sage: graphs_list.show_graphs(path_list)
}}}
attachment:path.png
Line 214: Line 317:

}}}


=== Tetrahedral Graph ===
{{{

}}}
sage: star_list = []
sage: for i in range (12)[4:]:
... star_list.append(graphs.StarGraph(i))
...
sage: graphs_list.show_graphs(star_list)
}}}
attachment:star.png
Line 226: Line 327:

}}}
sage: wheel_list = []
sage: for i in range (12)[4:]:
... wheel_list.append(graphs.WheelGraph(i))
...
sage: graphs_list.show_graphs(wheel_list)
}}}
attachment:wheel.png
Line 233: Line 338:
{{{

}}}
Use for dense graphs:
{{{
time
sage: (graphs.RandomGNP(16,.77)).show(figsize=[4,4], graph_border=True)
}}}
My results:
CPU time: 0.74 s, Wall time: 0.73 s
attachment:random.png
Line 239: Line 348:
{{{

}}}
Use for sparse graphs:
{{{
time
sage: (graphs.RandomGNPFast(16,.19)).show(figsize=[4,4], graph_border=True)
}}}
My results:
CPU time: 0.63 s, Wall time: 0.62 s
attachment:randomfast.png

=== Random Barabasi Albert ===
{{{
sage: (graphs.RandomBarabasiAlbert(7,3)).show(figsize=[4,4], graph_border=True)
}}}
attachment:barabasi.png

=== Random GNM ===
{{{
sage: (graphs.RandomGNM(7,16)).show(figsize=[4,4], graph_border=True)
}}}
attachment:gnm.png

=== Random Newman Watts Strogatz ===
{{{
sage: (graphs.RandomNewmanWattsStrogatz(7,3,.5)).show(figsize=[4,4], graph_border=True)
}}}
attachment:newman.png

=== Random Holme Kim ===
{{{
sage: (graphs.RandomHolmeKim(12,3,.4)).show(figsize=[4,4], graph_border=True)
}}}
attachment:holme.png

=== Random Lobster ===
{{{
sage: (graphs.RandomHolmeKim(12,3,.4)).show(figsize=[4,4], graph_border=True)
}}}
attachment:lobster.png

=== Random Tree Powerlaw ===
{{{
sage: (graphs.RandomTreePowerlaw(15)).show(figsize=[4,4], graph_border=True)
}}}
attachment:powerlaw.png

=== Random Regular ===
{{{
sage: (graphs.RandomRegular(3,20)).show(node_size=20, vertex_labels=False, figsize=[4,4], graph_border=True)
}}}
attachment:randreg.png

=== Random Shell ===
{{{
sage: (graphs.RandomShell([(10,20,0.8),(20,40,0.8)])).show(node_size=20, vertex_labels=False, figsize=[4,4], graph_border=True)
}}}
attachment:shell.png

== Random Directed Graphs ==

=== Random Directed GN ===
{{{
sage: (graphs.RandomDirectedGN(12)).show(node_size=20, vertex_labels=False, figsize=[4,4], graph_border=True)
}}}
attachment:randdirgn.png

=== Random Directed GNC ===
{{{
sage: (graphs.RandomDirectedGNC(12)).show(node_size=20, vertex_labels=False, figsize=[4,4], graph_border=True)
}}}
attachment:randdirgnc.png

=== Random Directed GNR ===
{{{
sage: (graphs.RandomDirectedGNR(12,.15)).show(node_size=20, vertex_labels=False, figsize=[4,4], graph_border=True)
}}}
attachment:randdirgnr.png

== Graphs With a Given Degree Sequence ==

=== Degree Sequence ===
{{{
sage: (graphs.DegreeSequence([3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3])).show(vertex_labels=False, node_size=30, figsize=[4,4], graph_border=True)
}}}
attachment:degseq.png

=== Degree Sequence Configuration Model ===
{{{
sage: (graphs.DegreeSequenceConfigurationModel([3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3])).show(vertex_labels=False, node_size=30, figsize=[4,4], graph_border=True)
}}}
attachment:degseqconf.png

=== Degree Sequence Tree ===
{{{
sage: (graphs.DegreeSequenceTree([3,1,3,3,1,1,1,2,1])).show(figsize=[4,4], graph_border=True)
}}}
attachment:degseqtree.png

=== Degree Sequence Expected ===
{{{
sage: (graphs.DegreeSequenceExpected([1,2,3,2,3])).show(figsize=[4,4],graph_border=True)
}}}
attachment:degseqexp.png

attachment:A5.jpg

Emily Kirkman is working on this project. Robert Miller did a lot of work on it too. [http://sage.math.washington.edu:9001/graph Back to main wiki.]

The goal of the Graph Generators Class is to implement constructors for many common graphs, as well as thorough docstrings that can be used for reference. The graph generators will grow as the Graph Theory Project does. So please check back for additions and feel free to leave requests in the suggestions section.

We currently have 54 constructors of named graphs and basic structures. Most of these graphs are constructed with a preset dictionary of x-y coordinates of each node. This is advantageous for both style and time. (The default graph plotting in SAGE uses the spring-layout algorithm). SAGE graphs all have an associated graphics object, and examples of plotting options are shown on the graphs below.

As we implement algorithms into the Graph Theory Package, the constructors of known graphs would set their properties upon instantiation as well. For example, if someone created a very large complete bipartite graph and then asked if it is a bipartite graph (not currently implemented), then instead of running through an algorithm to check it, we could return a value set at instantiation. Further, this will improve the reference use of the docstrings as we would list the properties of each named graph.

Due to the volume of graphs now in the generators class, this wiki page is now intended to give status updates and serve as a gallery of graphs currently implemented. To see information on a specific graph, run SAGE or the SAGE [http://sage.math.washington.edu:8100 notebook]. For a list of graph constructors, type "graphs." and hit tab. For docstrings, type the graph name and one question mark (i.e.: "graphs.CubeGraph?") then shift + enter. For source code, do likewise with two question marks.

TableOfContents

Suggestions

  • ???

Graphs I Plan to Add

Inherited from NetworkX

  • Bipartite Generators
  • Grid (n-dim)
  • Sedgewick
  • Truncated cube
  • Truncated tetrahedron
  • Tutte

Families of Graphs

  • Generalized Petersen graphs
  • Petersen Graph family
  • Trees (Directed – not simple. Maybe Balanced tree constructor and query isTree)
  • Cayley (Requires Edge Coloring)
  • Paley

Named Graphs

  • Brinkman
  • Clebsch
  • Grötzsch graph
  • Tutte eight-cage
  • Szekeres snark
  • Thomassen graph
  • Johnson (maybe own class)
  • Turan

Gallery of Graph Generators in SAGE

Named Graphs

Chvatal Graph

sage: (graphs.ChvatalGraph()).show(figsize=[4,4], graph_border=True)

attachment:chvatal.png

Desargues Graph

sage: (graphs.DesarguesGraph()).show(figsize=[4,4], graph_border=True)

attachment:desargues.png

Flower Snark

sage: flower_snark = graphs.FlowerSnark()
sage: flower_snark.set_boundary([15,16,17,18,19])
sage: flower_snark.show(figsize=[4,4], graph_border=True)

attachment:flower.png

Frucht

sage: frucht = graphs.FruchtGraph()
sage: frucht.show(figsize=[4,4], graph_border=True)

attachment:frucht.png

Heawood

sage: heawood = graphs.HeawoodGraph()
sage: heawood.show(figsize=[4,4], graph_border=True)

attachment:heawood.png

Möbius Kantor

sage: moebius_kantor = graphs.MoebiusKantorGraph()
sage: moebius_kantor.show(figsize=[4,4], graph_border=True)

attachment:moebiuskantor.png

Pappus Graph

sage: (graphs.PappusGraph()).show(figsize=[4,4], graph_border=True)

attachment:pappus.png

Petersen

sage: petersen = graphs.PetersenGraph()
sage: petersen.show(figsize=[4,4], graph_border=True)

attachment:petersen.png

Thomsen

sage: thomsen = graphs.ThomsenGraph()
sage: thomsen.show(figsize=[4,4], graph_border=True)

attachment:thomsen.png

Graph Families

Complete Bipartite Graphs

sage: comp_bip_list = []
sage: for i in range (2):
... for j in range (4):
...  comp_bip_list.append(graphs.CompleteBipartiteGraph(i+3,j+1))
...
sage: graphs_list.show_graphs(comp_bip_list)

attachment:compbip.png

Complete Graphs

sage: comp_list = []
sage: for i in range(13)[1:]:
... comp_list.append(graphs.CompleteGraph(i))
...
sage: graphs_list.show_graphs(comp_list)

attachment:complete.png

Cube Graphs

sage: cube_list = []
sage: for i in range(6)[2:]:
... cube_list.append(graphs.CubeGraph(i))
...
sage: graphs_list.show_graphs(cube_list)

attachment:cube.png

sage: bigger_cube = graphs.CubeGraph(8)
sage: bigger_cube.show(figsize=[8,8], node_size=20, vertex_labels=False, graph_border=True)

attachment:biggercube.png

Balanced Tree

sage: (graphs.BalancedTree(3,5)).show(node_size=20, vertex_labels=False, figsize=[4,4], graph_border=True)

attachment:baltree.png

LCF Graph

sage: (graphs.LCFGraph(20, [-10,-7,-5,4,7,-10,-7,-4,5,7,-10,-7,6,-5,7,-10,-7,5,-6,7], 1)).show(figsize=[4,4], graph_border=True)

attachment:lcf.png

Platonic Solids

Tetrahedral Graph

sage: tetrahedral = graphs.TetrahedralGraph()
sage: tetrahedral.show(figsize=[4,4], graph_border=True)

attachment:tetrahedral.png

Hexahedral Graph

sage: (graphs.HexahedralGraph()).show(figsize=[4,4], graph_border=True)

attachment:hexahedral.png

Octahedral Graph

sage: octahedral = graphs.OctahedralGraph()
sage: octahedral.show(figsize=[4,4], vertex_labels=False, node_size=50, graph_border=True)

attachment:octahedral.png

Icosahedral Graph

sage: (graphs.IcosahedralGraph()).show(figsize=[4,4], graph_border=True)

attachment:icosahedral.png

Dodecahedral Graph

sage: dodecahedral = graphs.DodecahedralGraph()
sage: dodecahedral.show(figsize=[4,4], vertex_labels=False, node_size=50, graph_border=True)

attachment:dodecahedral.png

Pseudofractal Graphs

Dorogovtsev Goltsev Mendes Graph

sage: (graphs.DorogovtsevGoltsevMendesGraph(5)).show(figsize=[4,4], graph_border=True, vertex_size=10, vertex_labels=False)

attachment:tmp_6.png

Basic Structures

Barbell Graph

sage: barbell_list = []
sage: for i in range (4):
... for j in range (2):
...  barbell_list.append(graphs.BarbellGraph(i+3, j+2))
...
sage: graphs_list.show_graphs(barbell_list)

attachment:barbell.png

Bull Graph

sage: bull = graphs.BullGraph()
sage: bull.show(figsize=[4,4], graph_border=True)

attachment:bull.png

Circular Ladder Graph

sage: circ_ladder = graphs.CircularLadderGraph(9)
sage: circ_ladder.show(figsize=[4,4], graph_border=True)

attachment:circladder.png

Claw Graph

sage: claw = graphs.ClawGraph()
sage: claw.show(figsize=[4,4], graph_border=True)

attachment:claw.png

Cycle Graphs

sage: cycle = graphs.CycleGraph(17)
sage: cycle.show(figsize=[4,4], graph_border=True)

attachment:cycle.png

Diamond Graph

sage: diamond = graphs.DiamondGraph()
sage: diamond.show(figsize=[4,4], graph_border=True)

attachment:diamond.png

Empty Graph

sage: empty = graphs.EmptyGraph()
sage: empty.show(figsize=[1,1], graph_border=True)

attachment:empty.png

Grid 2d Graph

sage: grid = graphs.Grid2dGraph(3,5)
sage: grid.show(figsize=[5,3])

attachment:grid.png

House Graph

sage: house = graphs.HouseGraph()
sage: house.show(figsize=[4,4], graph_border=True)

attachment:house.png

House X Graph

sage: houseX = graphs.HouseXGraph()
sage: houseX.show(figsize=[4,4], graph_border=True)

attachment:housex.png

Krackhardt Kite Graph

sage: krackhardt = graphs.KrackhardtKiteGraph()
sage: krackhardt.show(figsize=[4,4], graph_border=True)

attachment:krack.png

Ladder Graph

sage: ladder = graphs.LadderGraph(5)
sage: ladder.show(figsize=[4,4], graph_border=True)

attachment:ladder.png

Lollipop Graph

sage: lollipop_list = []
sage: for i in range (4):
... for j in range (2):
...  lollipop_list.append(graphs.LollipopGraph(i+3, j+2))
...
sage: graphs_list.show_graphs(lollipop_list)

attachment:lollipop.png

Path Graph

sage: path_line = graphs.PathGraph(5)
sage: path_circle = graphs.PathGraph(15)
sage: path_maze = graphs.PathGraph(45)
sage: path_list = [path_line, path_circle, path_maze]
sage: graphs_list.show_graphs(path_list)

attachment:path.png

Star Graph

sage: star_list = []
sage: for i in range (12)[4:]:
... star_list.append(graphs.StarGraph(i))
...
sage: graphs_list.show_graphs(star_list)

attachment:star.png

Wheel Graph

sage: wheel_list = []
sage: for i in range (12)[4:]:
... wheel_list.append(graphs.WheelGraph(i))
...
sage: graphs_list.show_graphs(wheel_list)

attachment:wheel.png

Random Generators

Random GNP

Use for dense graphs:

time
sage: (graphs.RandomGNP(16,.77)).show(figsize=[4,4], graph_border=True)

My results: CPU time: 0.74 s, Wall time: 0.73 s attachment:random.png

Random GNP Fast

Use for sparse graphs:

time
sage: (graphs.RandomGNPFast(16,.19)).show(figsize=[4,4], graph_border=True)

My results: CPU time: 0.63 s, Wall time: 0.62 s attachment:randomfast.png

Random Barabasi Albert

sage: (graphs.RandomBarabasiAlbert(7,3)).show(figsize=[4,4], graph_border=True)

attachment:barabasi.png

Random GNM

sage: (graphs.RandomGNM(7,16)).show(figsize=[4,4], graph_border=True)

attachment:gnm.png

Random Newman Watts Strogatz

sage: (graphs.RandomNewmanWattsStrogatz(7,3,.5)).show(figsize=[4,4], graph_border=True)

attachment:newman.png

Random Holme Kim

sage: (graphs.RandomHolmeKim(12,3,.4)).show(figsize=[4,4], graph_border=True)

attachment:holme.png

Random Lobster

sage: (graphs.RandomHolmeKim(12,3,.4)).show(figsize=[4,4], graph_border=True)

attachment:lobster.png

Random Tree Powerlaw

sage: (graphs.RandomTreePowerlaw(15)).show(figsize=[4,4], graph_border=True)

attachment:powerlaw.png

Random Regular

sage: (graphs.RandomRegular(3,20)).show(node_size=20, vertex_labels=False, figsize=[4,4], graph_border=True)

attachment:randreg.png

Random Shell

sage: (graphs.RandomShell([(10,20,0.8),(20,40,0.8)])).show(node_size=20, vertex_labels=False, figsize=[4,4], graph_border=True)

attachment:shell.png

Random Directed Graphs

Random Directed GN

sage: (graphs.RandomDirectedGN(12)).show(node_size=20, vertex_labels=False, figsize=[4,4], graph_border=True)

attachment:randdirgn.png

Random Directed GNC

sage: (graphs.RandomDirectedGNC(12)).show(node_size=20, vertex_labels=False, figsize=[4,4], graph_border=True)

attachment:randdirgnc.png

Random Directed GNR

sage: (graphs.RandomDirectedGNR(12,.15)).show(node_size=20, vertex_labels=False, figsize=[4,4], graph_border=True)

attachment:randdirgnr.png

Graphs With a Given Degree Sequence

Degree Sequence

sage: (graphs.DegreeSequence([3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3])).show(vertex_labels=False, node_size=30, figsize=[4,4], graph_border=True)

attachment:degseq.png

Degree Sequence Configuration Model

sage: (graphs.DegreeSequenceConfigurationModel([3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3])).show(vertex_labels=False, node_size=30, figsize=[4,4], graph_border=True)

attachment:degseqconf.png

Degree Sequence Tree

sage: (graphs.DegreeSequenceTree([3,1,3,3,1,1,1,2,1])).show(figsize=[4,4], graph_border=True)

attachment:degseqtree.png

Degree Sequence Expected

sage: (graphs.DegreeSequenceExpected([1,2,3,2,3])).show(figsize=[4,4],graph_border=True)

attachment:degseqexp.png

graph_generators (last edited 2008-11-14 13:41:50 by anonymous)