Processing Math: Done
jsMath
Differences between revisions 2 and 4 (spanning 2 versions)
Revision 2 as of 2007-01-23 01:40:25
Size: 74
Comment:
Revision 4 as of 2007-01-23 02:07:36
Size: 1648
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
 * 2^n-1 where n is odd
 * 2^n+1 where n is odd
 * 2^n+1 where n=4k-2
 * 2n1 where n is odd
 * 2n+1 where n is odd
 * 2n+1 where n = 4k − 2
 * 2n+1 where n = 4k
 * 3n1 where n is odd n < 540 ..... ......... . . . . 60
                   n ≤ 540 n = 6k − 3 ≤ 1077
 * 3n+1 L, M for . . . . 66
 * 5n1 where n is odd L, M for n = 10k − 5 ≤ 745 . . . .
                   n < 375 86
                   n ≤ 375
 * 5n+1 .................. 94
 * 6n1 where n is odd n < 330 . . . . . . . . . . . . . . . . . . 102
                   n ≤ 330 L, M for n = 12k − 6 ≤ 654 . . . . 106
 * 6n+1
 * 7n1 where n is odd n < 300 . . . . . . . . . . . . . . . . . . 116
                   n ≤ 300 L, M for n = 14k − 7 ≤ 595 . . . . 120
 * 7n+1
 * 10n1 where n is odd n < 330 ..... ......... . . . . 129
                   n ≤ 330 n = 20k − 10 ≤ 650
 * 10n+1 L, M for . . . . 133
 * 11n1 where n is odd n < 240 ..... ......... . . . . 142
                   n ≤ 240 n = 22k − 11 ≤ 473
 * 11n+1 L, M for . . . . 145
 * 12n1 where n is odd n < 240 ..... ......... . . . . 152
                   n ≤ 240 n = 6k − 3 ≤ 477 .
 * 12n+1 L, M for . . . . 155
  • 2n−1 where n is odd

  • 2n+1 where n is odd

  • 2n+1 where n = 4k − 2

  • 2n+1 where n = 4k

  • 3n−1 where n is odd n < 540 ..... ......... . . . . 60

    • n ≤ 540 n = 6k − 3 ≤ 1077
  • 3n+1 L, M for . . . . 66

  • 5n−1 where n is odd L, M for n = 10k − 5 ≤ 745 . . . .

    • n < 375 86 n ≤ 375

  • 5n+1 .................. 94

  • 6n−1 where n is odd n < 330 . . . . . . . . . . . . . . . . . . 102

    • n ≤ 330 L, M for n = 12k − 6 ≤ 654 . . . . 106
  • 6n+1

  • 7n−1 where n is odd n < 300 . . . . . . . . . . . . . . . . . . 116

    • n ≤ 300 L, M for n = 14k − 7 ≤ 595 . . . . 120
  • 7n+1

  • 10n−1 where n is odd n < 330 ..... ......... . . . . 129

    • n ≤ 330 n = 20k − 10 ≤ 650
  • 10n+1 L, M for . . . . 133

  • 11n−1 where n is odd n < 240 ..... ......... . . . . 142

    • n ≤ 240 n = 22k − 11 ≤ 473
  • 11n+1 L, M for . . . . 145

  • 12n−1 where n is odd n < 240 ..... ......... . . . . 152

    • n ≤ 240 n = 6k − 3 ≤ 477 .
  • 12n+1 L, M for . . . . 155

factorization_of_integers_of_special_forms (last edited 2008-11-14 13:41:51 by anonymous)