Size: 2970
Comment:
|
Size: 3091
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
Sage notebook wiki-output examples (paste below) | Trying out html2moin.py processor; this is one step in processing doc pages for a notebook help browser, as well as a step to making a wiki-version of the documentation. |
Trying out html2moin.py processor; this is one step in processing doc pages for a notebook help browser, as well as a step to making a wiki-version of the documentation.
14.3 Abelian group elements
[http://modular.math.washington.edu/sage/doc/html/ref/node144.html parent] |
[http://modular.math.washington.edu/sage/doc/html/ref/contents.html SAGE Reference Manual] |
[http://modular.math.washington.edu/sage/doc/html/ref/modindex.html module index] |
[http://modular.math.washington.edu/sage/doc/html/ref/genindex.html general index] |
Previous: [http://modular.math.washington.edu/sage/doc/html/ref/module-sage.groups.abelian-gps.abelian-group.html 14.2 Multiplicative Abelian Groups] Up: [http://modular.math.washington.edu/sage/doc/html/ref/node144.html 14. Groups] Next: [http://modular.math.washington.edu/sage/doc/html/ref/module-sage.groups.abelian-gps.abelian-group-morphism.html 14.4 Homomorphisms of abelian]
14.3 Abelian group elements
Anchor(SECTION0016300000000000000000)
Module: sage.groups.abelian_gps.abelian_group_element
Anchor(module-sage.groups.abelian-gps.abelian-group-element)
Author Log: BR
- David Joyner (2006-02); based on free_abelian_monoid_element.py, written
by David Kohel.BR
David Joyner (2006-05); bug fix in orderBR
- " (2006-08); bug fix+new method in pow for negatives+fixed corresponding
examples.BR
Recall an example from abelian groups.
1 sage: F = AbelianGroup(5,[4,5,5,7,8],names = list("abcde"))
2 sage: (a,b,c,d,e) = F.gens()
3 sage: x = a*b^2*e*d^20*e^12
4 sage: x
5 a*b^2*d^6*e^5
6 sage: x = a^10*b^12*c^13*d^20*e^12
7 sage: x
8 a^2*b^2*c^3*d^6*e^4
9 sage: y = a^13*b^19*c^23*d^27*e^72
10 sage: y
11 a*b^4*c^3*d^6
12 sage: x*y
13 a^3*b*c*d^5*e^4
14 sage: x.list()
15 [2, 2, 3, 6, 4]
It is important to note that lists are mutable and the returned list is not a copy. As a result, reassignment of an element of the list changes the object.
sage: x.list()[0] = 3 sage: x.list() [3, 2, 3, 6, 4] sage: x a^3*b^2*c^3*d^6*e^4
Module-level Functions
is_AbelianGroupElement (x )
Class: AbelianGroupElement
class AbelianGroupElement AbelianGroupElement (self, F, x )
Create the element x of the AbelianGroup F.
sage: F = AbelianGroup(5, [3,4,5,8,7], 'abcde') sage: a, b, c, d, e = F.gens() sage: a^2 * b^3 * a^2 * b^-4 a*b^3 sage: b^-11 b sage: a^-11 a sage: a*b in F True
Functions: as_permutation , list , order , random , word_problem
as_permutation (self )
Return the element of the permutation group G (isomorphic to the abelian group A) associated to a in A.