Processing Math: Done
No jsMath TeX fonts found -- using unicode fonts instead.
This may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 1 and 5 (spanning 4 versions)
Revision 1 as of 2006-10-09 23:04:25
Size: 51
Editor: anonymous
Comment:
Revision 5 as of 2006-10-23 01:08:04
Size: 3136
Editor: dmr
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
Sage notebook wiki-output examples (paste below): Trying out html2moin.py processor; this is one step in processing doc pages for a notebook help browser, as well as a step to making a wiki-version of the documentation. This is just a test using a random doc page.

14.3 Abelian group elements

||[http://modular.math.washington.edu/sage/doc/html/ref/module-sage.groups.abelian-gps.abelian-group.html prev]||[http://modular.math.washington.edu/sage/doc/html/ref/node144.html parent]||[http://modular.math.washington.edu/sage/doc/html/ref/module-sage.groups.abelian-gps.abelian-group-morphism.html next]||<style="width:90%; text-align: center;">[http://modular.math.washington.edu/sage/doc/html/ref/contents.html ''SAGE'' Reference Manual]||[http://modular.math.washington.edu/sage/doc/html/ref/modindex.html module index]||[http://modular.math.washington.edu/sage/doc/html/ref/genindex.html general index]||

 '''Previous:''' [http://modular.math.washington.edu/sage/doc/html/ref/module-sage.groups.abelian-gps.abelian-group.html 14.2 Multiplicative Abelian Groups]
 '''Up:''' [http://modular.math.washington.edu/sage/doc/html/ref/node144.html 14. Groups]
 '''Next:''' [http://modular.math.washington.edu/sage/doc/html/ref/module-sage.groups.abelian-gps.abelian-group-morphism.html 14.4 Homomorphisms of abelian]


----

## End of Navigation Panel


= 14.3 Abelian group elements =
[[Anchor(SECTION0016300000000000000000)]]
 '''Module:''' {{{sage.groups.abelian_gps.abelian_group_element}}}

[[Anchor(module-sage.groups.abelian-gps.abelian-group-element)]]

 '''Author Log:''' [[BR]]


 * David Joyner (2006-02); based on free_abelian_monoid_element.py, written
 by David Kohel.[[BR]]

 * David Joyner (2006-05); bug fix in order[[BR]]

 * " (2006-08); bug fix+new method in pow for negatives+fixed corresponding
 examples.[[BR]]

Recall an example from abelian groups.
{{{#!python
sage: F = AbelianGroup(5,[4,5,5,7,8],names = list("abcde"))
sage: (a,b,c,d,e) = F.gens()
sage: x = a*b^2*e*d^20*e^12
sage: x
a*b^2*d^6*e^5
sage: x = a^10*b^12*c^13*d^20*e^12
sage: x
a^2*b^2*c^3*d^6*e^4
sage: y = a^13*b^19*c^23*d^27*e^72
sage: y
a*b^4*c^3*d^6
sage: x*y
a^3*b*c*d^5*e^4
sage: x.list()
[2, 2, 3, 6, 4]
}}}

It is important to note that lists are mutable and the returned list is not
a copy. As a result, reassignment of an element of the list changes the
object.
{{{
sage: x.list()[0] = 3
sage: x.list()
[3, 2, 3, 6, 4]
sage: x
a^3*b^2*c^3*d^6*e^4
}}}
 '''Module-level Functions'''



 ''' `is_AbelianGroupElement` ''' (x )


 '''Class: {{{AbelianGroupElement}}}'''


 '''class `AbelianGroupElement` '''
 ''' `AbelianGroupElement` ''' (self, F, x )
Create the element x of the AbelianGroup F.


{{{
sage: F = AbelianGroup(5, [3,4,5,8,7], 'abcde')
sage: a, b, c, d, e = F.gens()
sage: a^2 * b^3 * a^2 * b^-4
a*b^3
sage: b^-11
b
sage: a^-11
a
sage: a*b in F
True
}}}


 '''Functions:''' `as_permutation` , `list` , `order` , `random` , `word_problem`



 ''' `as_permutation` ''' (self )
Return the element of the permutation group G (isomorphic to the abelian
group A) associated to a in A.

Trying out html2moin.py processor; this is one step in processing doc pages for a notebook help browser, as well as a step to making a wiki-version of the documentation. This is just a test using a random doc page.

14.3 Abelian group elements

[http://modular.math.washington.edu/sage/doc/html/ref/module-sage.groups.abelian-gps.abelian-group.html prev]

[http://modular.math.washington.edu/sage/doc/html/ref/node144.html parent]

[http://modular.math.washington.edu/sage/doc/html/ref/module-sage.groups.abelian-gps.abelian-group-morphism.html next]

[http://modular.math.washington.edu/sage/doc/html/ref/contents.html SAGE Reference Manual]

[http://modular.math.washington.edu/sage/doc/html/ref/modindex.html module index]

[http://modular.math.washington.edu/sage/doc/html/ref/genindex.html general index]


14.3 Abelian group elements

Anchor(SECTION0016300000000000000000)

  • Module: sage.groups.abelian_gps.abelian_group_element

Anchor(module-sage.groups.abelian-gps.abelian-group-element)

  • Author Log: BR

  • David Joyner (2006-02); based on free_abelian_monoid_element.py, written

    by David Kohel.BR

  • David Joyner (2006-05); bug fix in orderBR

  • " (2006-08); bug fix+new method in pow for negatives+fixed corresponding

    examples.BR

Recall an example from abelian groups.

Toggle line numbers
   1 sage: F = AbelianGroup(5,[4,5,5,7,8],names = list("abcde"))
   2 sage: (a,b,c,d,e) = F.gens()
   3 sage: x = a*b^2*e*d^20*e^12
   4 sage: x
   5 a*b^2*d^6*e^5
   6 sage: x = a^10*b^12*c^13*d^20*e^12
   7 sage: x
   8 a^2*b^2*c^3*d^6*e^4
   9 sage: y = a^13*b^19*c^23*d^27*e^72
  10 sage: y
  11 a*b^4*c^3*d^6
  12 sage: x*y
  13 a^3*b*c*d^5*e^4
  14 sage: x.list()
  15 [2, 2, 3, 6, 4]

It is important to note that lists are mutable and the returned list is not a copy. As a result, reassignment of an element of the list changes the object.

sage: x.list()[0] = 3
sage: x.list()
[3, 2, 3, 6, 4]
sage: x
a^3*b^2*c^3*d^6*e^4
  • Module-level Functions

    is_AbelianGroupElement (x )

    Class: AbelianGroupElement

    class AbelianGroupElement AbelianGroupElement (self, F, x )

Create the element x of the AbelianGroup F.

sage: F = AbelianGroup(5, [3,4,5,8,7], 'abcde')
sage: a, b, c, d, e = F.gens()
sage: a^2 * b^3 * a^2 * b^-4
a*b^3
sage: b^-11
b
sage: a^-11
a
sage: a*b in F
True
  • Functions: as_permutation , list , order , random , word_problem

    as_permutation (self )

Return the element of the permutation group G (isomorphic to the abelian group A) associated to a in A.

dmr/example (last edited 2008-11-14 13:41:51 by anonymous)